Martín Santillán Cooper
Adapt for deployment on HF ZeroSpace
477d968
raw
history blame
5.75 kB
import os
from time import time, sleep
from logger import logger
import math
import os
from ibm_watsonx_ai.client import APIClient
from ibm_watsonx_ai.foundation_models import ModelInference
from transformers import AutoTokenizer
import math
import spaces
safe_token = "No"
risky_token = "Yes"
nlogprobs = 5
inference_engine = os.getenv('INFERENCE_ENGINE', 'VLLM')
logger.debug(f"Inference engine is: '{inference_engine}'")
if inference_engine == 'VLLM':
import torch
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_path = os.getenv('MODEL_PATH', 'ibm-granite/granite-guardian-3.0-8b')
logger.debug(f"model_path is {model_path}")
tokenizer = AutoTokenizer.from_pretrained(model_path)
sampling_params = SamplingParams(temperature=0.0, logprobs=nlogprobs)
model = LLM(model=model_path, tensor_parallel_size=1)
elif inference_engine == "WATSONX":
client = APIClient(credentials={
'api_key': os.getenv('WATSONX_API_KEY'),
'url': 'https://us-south.ml.cloud.ibm.com'})
client.set.default_project(os.getenv('WATSONX_PROJECT_ID'))
hf_model_path = "ibm-granite/granite-guardian-3.0-8b"
tokenizer = AutoTokenizer.from_pretrained(hf_model_path)
model_id = "ibm/granite-guardian-3-8b" # 8B Model: "ibm/granite-guardian-3-8b"
model = ModelInference(
model_id=model_id,
api_client=client
)
def parse_output(output):
label, prob = None, None
if nlogprobs > 0:
logprobs = next(iter(output.outputs)).logprobs
if logprobs is not None:
prob = get_probablities(logprobs)
prob_of_risk = prob[1]
res = next(iter(output.outputs)).text.strip()
if risky_token.lower() == res.lower():
label = risky_token
elif safe_token.lower() == res.lower():
label = safe_token
else:
label = "Failed"
return label, prob_of_risk.item()
def softmax(values):
exp_values = [math.exp(v) for v in values]
total = sum(exp_values)
return [v / total for v in exp_values]
def get_probablities(logprobs):
safe_token_prob = 1e-50
unsafe_token_prob = 1e-50
for gen_token_i in logprobs:
for token_prob in gen_token_i.values():
decoded_token = token_prob.decoded_token
if decoded_token.strip().lower() == safe_token.lower():
safe_token_prob += math.exp(token_prob.logprob)
if decoded_token.strip().lower() == risky_token.lower():
unsafe_token_prob += math.exp(token_prob.logprob)
probabilities = torch.softmax(
torch.tensor([math.log(safe_token_prob), math.log(unsafe_token_prob)]), dim=0
)
return probabilities
def get_probablities_watsonx(top_tokens_list):
safe_token_prob = 1e-50
risky_token_prob = 1e-50
for top_tokens in top_tokens_list:
for token in top_tokens:
if token['text'].strip().lower() == safe_token.lower():
safe_token_prob += math.exp(token['logprob'])
if token['text'].strip().lower() == risky_token.lower():
risky_token_prob += math.exp(token['logprob'])
probabilities = softmax([math.log(safe_token_prob), math.log(risky_token_prob)])
return probabilities
def get_prompt(messages, criteria_name):
guardian_config = {"risk_name": criteria_name if criteria_name != 'general_harm' else 'harm'}
return tokenizer.apply_chat_template(
messages,
guardian_config=guardian_config,
tokenize=False,
add_generation_prompt=True)
def generate_tokens(prompt):
result = model.generate(
prompt=[prompt],
params={
'decoding_method':'greedy',
'max_new_tokens': 20,
"temperature": 0,
"return_options": {
"token_logprobs": True,
"generated_tokens": True,
"input_text": True,
"top_n_tokens": 5
}
})
return result[0]['results'][0]['generated_tokens']
def parse_output_watsonx(generated_tokens_list):
label, prob_of_risk = None, None
if nlogprobs > 0:
top_tokens_list = [generated_tokens['top_tokens'] for generated_tokens in generated_tokens_list]
prob = get_probablities_watsonx(top_tokens_list)
prob_of_risk = prob[1]
res = next(iter(generated_tokens_list))['text'].strip()
if risky_token.lower() == res.lower():
label = risky_token
elif safe_token.lower() == res.lower():
label = safe_token
else:
label = "Failed"
return label, prob_of_risk
@spaces.GPU
def generate_text(messages, criteria_name):
logger.debug(f'Messages used to create the prompt are: \n{messages}')
start = time()
chat = get_prompt(messages, criteria_name)
logger.debug(f'Prompt is \n{chat}')
if inference_engine=="MOCK":
logger.debug('Returning mocked model result.')
sleep(1)
label, prob_of_risk = 'Yes', 0.97
elif inference_engine=="WATSONX":
generated_tokens = generate_tokens(chat)
label, prob_of_risk = parse_output_watsonx(generated_tokens)
elif inference_engine=="VLLM":
with torch.no_grad():
output = model.generate(chat, sampling_params, use_tqdm=False)
label, prob_of_risk = parse_output(output[0])
else:
raise Exception("Environment variable 'INFERENCE_ENGINE' must be one of [WATSONX, MOCK, VLLM]")
logger.debug(f'Model generated label: \n{label}')
logger.debug(f'Model prob_of_risk: \n{prob_of_risk}')
end = time()
total = end - start
logger.debug(f'The evaluation took {total} secs')
return {'assessment': label, 'certainty': prob_of_risk}