|
import ast |
|
import os |
|
import sys |
|
from typing import Union, List |
|
|
|
if os.path.dirname(os.path.abspath(os.path.join(__file__, '..'))) not in sys.path: |
|
sys.path.append(os.path.dirname(os.path.abspath(os.path.join(__file__, '..')))) |
|
|
|
from gpt_langchain import path_to_docs, get_some_dbs_from_hf, all_db_zips, some_db_zips, create_or_update_db, \ |
|
get_persist_directory, get_existing_db |
|
from utils import H2O_Fire, makedirs, n_gpus_global |
|
|
|
|
|
def glob_to_db(user_path, chunk=True, chunk_size=512, verbose=False, |
|
fail_any_exception=False, n_jobs=-1, url=None, |
|
|
|
|
|
use_unstructured=True, |
|
use_playwright=False, |
|
use_selenium=False, |
|
use_scrapeplaywright=False, |
|
use_scrapehttp=False, |
|
|
|
|
|
use_pymupdf='auto', |
|
use_unstructured_pdf='auto', |
|
use_pypdf='auto', |
|
enable_pdf_ocr='auto', |
|
try_pdf_as_html='auto', |
|
enable_pdf_doctr='auto', |
|
|
|
|
|
enable_ocr=False, |
|
enable_doctr=False, |
|
enable_pix2struct=False, |
|
enable_captions=True, |
|
enable_llava=True, |
|
enable_transcriptions=True, |
|
captions_model=None, |
|
caption_loader=None, |
|
doctr_loader=None, |
|
llava_model=None, |
|
llava_prompt=None, |
|
asr_model=None, |
|
asr_loader=None, |
|
|
|
|
|
jq_schema='.[]', |
|
extract_frames=10, |
|
|
|
db_type=None, |
|
selected_file_types=None, |
|
|
|
is_public=False): |
|
assert db_type is not None |
|
|
|
loaders_and_settings = dict( |
|
|
|
verbose=verbose, fail_any_exception=fail_any_exception, |
|
|
|
n_jobs=n_jobs, |
|
|
|
|
|
chunk=chunk, |
|
chunk_size=chunk_size, |
|
|
|
|
|
use_unstructured=use_unstructured, |
|
use_playwright=use_playwright, |
|
use_selenium=use_selenium, |
|
use_scrapeplaywright=use_scrapeplaywright, |
|
use_scrapehttp=use_scrapehttp, |
|
|
|
|
|
use_pymupdf=use_pymupdf, |
|
use_unstructured_pdf=use_unstructured_pdf, |
|
use_pypdf=use_pypdf, |
|
enable_pdf_ocr=enable_pdf_ocr, |
|
try_pdf_as_html=try_pdf_as_html, |
|
enable_pdf_doctr=enable_pdf_doctr, |
|
|
|
|
|
enable_ocr=enable_ocr, |
|
enable_doctr=enable_doctr, |
|
enable_pix2struct=enable_pix2struct, |
|
enable_captions=enable_captions, |
|
enable_llava=enable_llava, |
|
enable_transcriptions=enable_transcriptions, |
|
captions_model=captions_model, |
|
caption_loader=caption_loader, |
|
doctr_loader=doctr_loader, |
|
llava_model=llava_model, |
|
llava_prompt=llava_prompt, |
|
asr_model=asr_model, |
|
asr_loader=asr_loader, |
|
|
|
|
|
jq_schema=jq_schema, |
|
extract_frames=extract_frames, |
|
|
|
db_type=db_type, |
|
is_public=is_public, |
|
) |
|
sources1 = path_to_docs(user_path, |
|
url=url, |
|
**loaders_and_settings, |
|
selected_file_types=selected_file_types, |
|
) |
|
return sources1 |
|
|
|
|
|
def make_db_main(use_openai_embedding: bool = False, |
|
hf_embedding_model: str = None, |
|
migrate_embedding_model=False, |
|
auto_migrate_db=False, |
|
persist_directory: str = None, |
|
user_path: str = 'user_path', |
|
langchain_type: str = 'shared', |
|
url: Union[List[str], str] = None, |
|
add_if_exists: bool = True, |
|
collection_name: str = 'UserData', |
|
verbose: bool = False, |
|
chunk: bool = True, |
|
chunk_size: int = 512, |
|
fail_any_exception: bool = False, |
|
download_all: bool = False, |
|
download_some: bool = False, |
|
download_one: str = None, |
|
download_dest: str = None, |
|
n_jobs: int = -1, |
|
|
|
|
|
use_unstructured=True, |
|
use_playwright=False, |
|
use_selenium=False, |
|
use_scrapeplaywright=False, |
|
use_scrapehttp=False, |
|
|
|
|
|
use_pymupdf='auto', |
|
use_unstructured_pdf='auto', |
|
use_pypdf='auto', |
|
enable_pdf_ocr='auto', |
|
enable_pdf_doctr='auto', |
|
try_pdf_as_html='auto', |
|
|
|
|
|
enable_ocr=False, |
|
enable_doctr=False, |
|
enable_pix2struct=False, |
|
enable_captions=True, |
|
enable_llava=True, |
|
captions_model: str = "Salesforce/blip-image-captioning-base", |
|
llava_model: str = None, |
|
llava_prompt: str = None, |
|
pre_load_image_audio_models: bool = False, |
|
caption_gpu: bool = True, |
|
|
|
|
|
|
|
enable_transcriptions: bool = True, |
|
asr_model: str = "openai/whisper-medium", |
|
asr_gpu: bool = True, |
|
|
|
|
|
jq_schema='.[]', |
|
extract_frames=10, |
|
|
|
db_type: str = 'chroma', |
|
selected_file_types: Union[List[str], str] = None, |
|
fail_if_no_sources: bool = True |
|
): |
|
""" |
|
# To make UserData db for generate.py, put pdfs, etc. into path user_path and run: |
|
python src/make_db.py |
|
|
|
# once db is made, can use in generate.py like: |
|
|
|
python generate.py --base_model=h2oai/h2ogpt-oig-oasst1-512-6_9b --langchain_mode=UserData |
|
|
|
or zip-up the db_dir_UserData and share: |
|
|
|
zip -r db_dir_UserData.zip db_dir_UserData |
|
|
|
# To get all db files (except large wiki_full) do: |
|
python src/make_db.py --download_some=True |
|
|
|
# To get a single db file from HF: |
|
python src/make_db.py --download_one=db_dir_DriverlessAI_docs.zip |
|
|
|
:param use_openai_embedding: Whether to use OpenAI embedding |
|
:param hf_embedding_model: HF embedding model to use. Like generate.py, uses 'hkunlp/instructor-large' if have GPUs, else "sentence-transformers/all-MiniLM-L6-v2" |
|
:param migrate_embedding_model: whether to migrate to newly chosen hf_embedding_model or stick with one in db |
|
:param auto_migrate_db: whether to migrate database for chroma<0.4 -> >0.4 |
|
:param persist_directory: where to persist db (note generate.py always uses db_dir_<collection name> |
|
If making personal database for user, set persistent_directory to users/<username>/db_dir_<collection name> |
|
and pass --langchain_type=personal |
|
:param user_path: where to pull documents from (None means url is not None. If url is not None, this is ignored.) |
|
:param langchain_type: type of database, i.e.. 'shared' or 'personal' |
|
:param url: url (or urls) to generate documents from (None means user_path is not None) |
|
:param add_if_exists: Add to db if already exists, but will not add duplicate sources |
|
:param collection_name: Collection name for new db if not adding |
|
Normally same as langchain_mode |
|
:param verbose: whether to show verbose messages |
|
:param chunk: whether to chunk data |
|
:param chunk_size: chunk size for chunking |
|
:param fail_any_exception: whether to fail if any exception hit during ingestion of files |
|
:param download_all: whether to download all (including 23GB Wikipedia) example databases from h2o.ai HF |
|
:param download_some: whether to download some small example databases from h2o.ai HF |
|
:param download_one: whether to download one chosen example databases from h2o.ai HF |
|
:param download_dest: Destination for downloads |
|
:param n_jobs: Number of cores to use for ingesting multiple files |
|
|
|
:param use_unstructured: see gen.py |
|
:param use_playwright: see gen.py |
|
:param use_selenium: see gen.py |
|
:param use_scrapeplaywright: see gen.py |
|
:param use_scrapehttp: see gen.py |
|
|
|
:param use_pymupdf: see gen.py |
|
:param use_unstructured_pdf: see gen.py |
|
:param use_pypdf: see gen.py |
|
:param enable_pdf_ocr: see gen.py |
|
:param try_pdf_as_html: see gen.py |
|
:param enable_pdf_doctr: see gen.py |
|
|
|
:param enable_ocr: see gen.py |
|
:param enable_doctr: see gen.py |
|
:param enable_pix2struct: see gen.py |
|
:param enable_captions: Whether to enable captions on images |
|
:param enable_llava: See gen.py |
|
:param captions_model: See gen.py |
|
:param llava_model: See gen.py |
|
:param llava_prompt: See gen.py |
|
:param pre_load_image_audio_models: See generate.py |
|
:param caption_gpu: Caption images on GPU if present |
|
|
|
:param db_type: 'faiss' for in-memory |
|
'chroma' (for chroma >= 0.4) |
|
'chroma_old' (for chroma < 0.4) -- recommended for large collections |
|
'weaviate' for persisted on disk |
|
:param selected_file_types: File types (by extension) to include if passing user_path |
|
For a list of possible values, see: |
|
https://github.com/h2oai/h2ogpt/blob/main/docs/README_LangChain.md#shoosing-document-types |
|
e.g. --selected_file_types="['pdf', 'html', 'htm']" |
|
:return: None |
|
""" |
|
db = None |
|
|
|
if isinstance(selected_file_types, str): |
|
selected_file_types = ast.literal_eval(selected_file_types) |
|
if persist_directory is None: |
|
persist_directory, langchain_type = get_persist_directory(collection_name, langchain_type=langchain_type) |
|
if download_dest is None: |
|
download_dest = makedirs('./', use_base=True) |
|
|
|
|
|
n_gpus = n_gpus_global |
|
if n_gpus == 0: |
|
if hf_embedding_model is None: |
|
|
|
hf_embedding_model = "sentence-transformers/all-MiniLM-L6-v2" |
|
else: |
|
if hf_embedding_model is None: |
|
|
|
hf_embedding_model = 'hkunlp/instructor-large' |
|
|
|
existing_db = False |
|
|
|
if download_all: |
|
print("Downloading all (and unzipping): %s" % all_db_zips, flush=True) |
|
get_some_dbs_from_hf(download_dest, db_zips=all_db_zips) |
|
if verbose: |
|
print("DONE", flush=True) |
|
existing_db = True |
|
elif download_some: |
|
print("Downloading some (and unzipping): %s" % some_db_zips, flush=True) |
|
get_some_dbs_from_hf(download_dest, db_zips=some_db_zips) |
|
if verbose: |
|
print("DONE", flush=True) |
|
existing_db = True |
|
elif download_one: |
|
print("Downloading %s (and unzipping)" % download_one, flush=True) |
|
get_some_dbs_from_hf(download_dest, db_zips=[[download_one, '', 'Unknown License']]) |
|
if verbose: |
|
print("DONE", flush=True) |
|
existing_db = True |
|
|
|
if existing_db: |
|
load_db_if_exists = True |
|
langchain_mode = collection_name |
|
langchain_mode_paths = dict(langchain_mode=None) |
|
langchain_mode_types = dict(langchain_mode='shared') |
|
db, use_openai_embedding, hf_embedding_model = \ |
|
get_existing_db(None, persist_directory, load_db_if_exists, db_type, |
|
use_openai_embedding, |
|
langchain_mode, langchain_mode_paths, langchain_mode_types, |
|
hf_embedding_model, migrate_embedding_model, auto_migrate_db, |
|
verbose=False, |
|
n_jobs=n_jobs) |
|
return db, collection_name |
|
|
|
if enable_captions and pre_load_image_audio_models: |
|
|
|
|
|
|
|
from image_captions import H2OImageCaptionLoader |
|
caption_loader = H2OImageCaptionLoader(None, |
|
blip_model=captions_model, |
|
blip_processor=captions_model, |
|
caption_gpu=caption_gpu, |
|
).load_model() |
|
else: |
|
if enable_captions: |
|
caption_loader = 'gpu' if n_gpus > 0 and caption_gpu else 'cpu' |
|
else: |
|
caption_loader = False |
|
if enable_doctr or enable_pdf_ocr in [True, 'auto', 'on']: |
|
doctr_loader = 'gpu' if n_gpus > 0 and caption_gpu else 'cpu' |
|
else: |
|
doctr_loader = False |
|
|
|
if enable_transcriptions: |
|
asr_loader = 'gpu' if n_gpus > 0 and asr_gpu else 'cpu' |
|
else: |
|
asr_loader = False |
|
|
|
if verbose: |
|
print("Getting sources", flush=True) |
|
assert user_path is not None or url is not None, "Can't have both user_path and url as None" |
|
if not url: |
|
assert os.path.isdir(user_path), "user_path=%s does not exist" % user_path |
|
sources = glob_to_db(user_path, chunk=chunk, chunk_size=chunk_size, verbose=verbose, |
|
fail_any_exception=fail_any_exception, n_jobs=n_jobs, url=url, |
|
|
|
|
|
use_unstructured=use_unstructured, |
|
use_playwright=use_playwright, |
|
use_selenium=use_selenium, |
|
use_scrapeplaywright=use_scrapeplaywright, |
|
use_scrapehttp=use_scrapehttp, |
|
|
|
|
|
use_pymupdf=use_pymupdf, |
|
use_unstructured_pdf=use_unstructured_pdf, |
|
use_pypdf=use_pypdf, |
|
enable_pdf_ocr=enable_pdf_ocr, |
|
try_pdf_as_html=try_pdf_as_html, |
|
enable_pdf_doctr=enable_pdf_doctr, |
|
|
|
|
|
enable_ocr=enable_ocr, |
|
enable_doctr=enable_doctr, |
|
enable_pix2struct=enable_pix2struct, |
|
enable_captions=enable_captions, |
|
enable_llava=enable_llava, |
|
enable_transcriptions=enable_transcriptions, |
|
captions_model=captions_model, |
|
caption_loader=caption_loader, |
|
doctr_loader=doctr_loader, |
|
llava_model=llava_model, |
|
llava_prompt=llava_prompt, |
|
|
|
asr_loader=asr_loader, |
|
asr_model=asr_model, |
|
|
|
|
|
jq_schema=jq_schema, |
|
extract_frames=extract_frames, |
|
|
|
db_type=db_type, |
|
selected_file_types=selected_file_types, |
|
|
|
is_public=False, |
|
) |
|
exceptions = [x for x in sources if x.metadata.get('exception')] |
|
print("Exceptions: %s/%s %s" % (len(exceptions), len(sources), exceptions), flush=True) |
|
sources = [x for x in sources if 'exception' not in x.metadata] |
|
|
|
assert len(sources) > 0 or not fail_if_no_sources, "No sources found" |
|
db = create_or_update_db(db_type, persist_directory, |
|
collection_name, user_path, langchain_type, |
|
sources, use_openai_embedding, add_if_exists, verbose, |
|
hf_embedding_model, migrate_embedding_model, auto_migrate_db, |
|
n_jobs=n_jobs) |
|
|
|
assert db is not None or not fail_if_no_sources |
|
if verbose: |
|
print("DONE", flush=True) |
|
return db, collection_name |
|
|
|
|
|
if __name__ == "__main__": |
|
H2O_Fire(make_db_main) |
|
|