Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. | |
import numpy as np | |
import torch | |
def round_width(width, multiplier, min_width=1, divisor=1, verbose=False): | |
if not multiplier: | |
return width | |
width *= multiplier | |
min_width = min_width or divisor | |
if verbose: | |
print(f"min width {min_width}") | |
print(f"width {width} divisor {divisor}") | |
print(f"other {int(width + divisor / 2) // divisor * divisor}") | |
width_out = max(min_width, int(width + divisor / 2) // divisor * divisor) | |
if width_out < 0.9 * width: | |
width_out += divisor | |
return int(width_out) | |
def validate_checkpoint_wrapper_import(checkpoint_wrapper): | |
""" | |
Check if checkpoint_wrapper is imported. | |
""" | |
if checkpoint_wrapper is None: | |
raise ImportError("Please install fairscale.") | |
def get_gkern(kernlen, std): | |
"""Returns a 2D Gaussian kernel array.""" | |
def _gaussian_fn(kernlen, std): | |
n = torch.arange(0, kernlen).float() | |
n -= n.mean() | |
n /= std | |
w = torch.exp(-0.5 * n**2) | |
return w | |
gkern1d = _gaussian_fn(kernlen, std) | |
gkern2d = torch.outer(gkern1d, gkern1d) | |
return gkern2d / gkern2d.sum() | |
# -------------------------------------------------------- | |
# 2D sine-cosine position embedding | |
# References: | |
# Transformer: https://github.com/tensorflow/models/blob/master/official/nlp/transformer/model_utils.py | |
# MoCo v3: https://github.com/facebookresearch/moco-v3 | |
# -------------------------------------------------------- | |
def get_3d_sincos_pos_embed(embed_dim, grid_size, t_size, cls_token=False): | |
""" | |
grid_size: int of the grid height and width | |
t_size: int of the temporal size | |
return: | |
pos_embed: [t_size*grid_size*grid_size, embed_dim] or [1+t_size*grid_size*grid_size, embed_dim] (w/ or w/o cls_token) | |
""" | |
assert embed_dim % 4 == 0 | |
embed_dim_spatial = embed_dim // 4 * 3 | |
embed_dim_temporal = embed_dim // 4 | |
# spatial | |
grid_h = np.arange(grid_size, dtype=np.float32) | |
grid_w = np.arange(grid_size, dtype=np.float32) | |
grid = np.meshgrid(grid_w, grid_h) # here w goes first | |
grid = np.stack(grid, axis=0) | |
grid = grid.reshape([2, 1, grid_size, grid_size]) | |
pos_embed_spatial = get_2d_sincos_pos_embed_from_grid( | |
embed_dim_spatial, grid | |
) | |
# temporal | |
grid_t = np.arange(t_size, dtype=np.float32) | |
pos_embed_temporal = get_1d_sincos_pos_embed_from_grid( | |
embed_dim_temporal, grid_t | |
) | |
# concate: [T, H, W] order | |
pos_embed_temporal = pos_embed_temporal[:, np.newaxis, :] | |
pos_embed_temporal = np.repeat( | |
pos_embed_temporal, grid_size**2, axis=1 | |
) # [T, H*W, D // 4] | |
pos_embed_spatial = pos_embed_spatial[np.newaxis, :, :] | |
pos_embed_spatial = np.repeat( | |
pos_embed_spatial, t_size, axis=0 | |
) # [T, H*W, D // 4 * 3] | |
pos_embed = np.concatenate([pos_embed_temporal, pos_embed_spatial], axis=-1) | |
pos_embed = pos_embed.reshape([-1, embed_dim]) # [T*H*W, D] | |
if cls_token: | |
pos_embed = np.concatenate( | |
[np.zeros([1, embed_dim]), pos_embed], axis=0 | |
) | |
return pos_embed | |
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False): | |
""" | |
grid_size: int of the grid height and width | |
return: | |
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) | |
""" | |
grid_h = np.arange(grid_size, dtype=np.float32) | |
grid_w = np.arange(grid_size, dtype=np.float32) | |
grid = np.meshgrid(grid_w, grid_h) # here w goes first | |
grid = np.stack(grid, axis=0) | |
grid = grid.reshape([2, 1, grid_size, grid_size]) | |
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) | |
if cls_token: | |
pos_embed = np.concatenate( | |
[np.zeros([1, embed_dim]), pos_embed], axis=0 | |
) | |
return pos_embed | |
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): | |
assert embed_dim % 2 == 0 | |
# use half of dimensions to encode grid_h | |
emb_h = get_1d_sincos_pos_embed_from_grid( | |
embed_dim // 2, grid[0] | |
) # (H*W, D/2) | |
emb_w = get_1d_sincos_pos_embed_from_grid( | |
embed_dim // 2, grid[1] | |
) # (H*W, D/2) | |
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) | |
return emb | |
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): | |
""" | |
embed_dim: output dimension for each position | |
pos: a list of positions to be encoded: size (M,) | |
out: (M, D) | |
""" | |
assert embed_dim % 2 == 0 | |
omega = np.arange(embed_dim // 2, dtype=np.float) | |
omega /= embed_dim / 2.0 | |
omega = 1.0 / 10000**omega # (D/2,) | |
pos = pos.reshape(-1) # (M,) | |
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product | |
emb_sin = np.sin(out) # (M, D/2) | |
emb_cos = np.cos(out) # (M, D/2) | |
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) | |
return emb | |
# -------------------------------------------------------- | |
# Interpolate position embeddings for high-resolution | |
# References: | |
# DeiT: https://github.com/facebookresearch/deit | |
# -------------------------------------------------------- | |
def interpolate_pos_embed(model, checkpoint_model): | |
if "pos_embed" in checkpoint_model: | |
pos_embed_checkpoint = checkpoint_model["pos_embed"] | |
embedding_size = pos_embed_checkpoint.shape[-1] | |
num_patches = model.patch_embed.num_patches | |
num_extra_tokens = model.pos_embed.shape[-2] - num_patches | |
# height (== width) for the checkpoint position embedding | |
orig_size = int( | |
(pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5 | |
) | |
# height (== width) for the new position embedding | |
new_size = int(num_patches**0.5) | |
# class_token and dist_token are kept unchanged | |
if orig_size != new_size: | |
print( | |
"Position interpolate from %dx%d to %dx%d" | |
% (orig_size, orig_size, new_size, new_size) | |
) | |
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] | |
# only the position tokens are interpolated | |
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] | |
pos_tokens = pos_tokens.reshape( | |
-1, orig_size, orig_size, embedding_size | |
).permute(0, 3, 1, 2) | |
pos_tokens = torch.nn.functional.interpolate( | |
pos_tokens, | |
size=(new_size, new_size), | |
mode="bicubic", | |
align_corners=False, | |
) | |
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) | |
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) | |
checkpoint_model["pos_embed"] = new_pos_embed | |
def calc_mvit_feature_geometry(cfg): | |
feat_size = [ | |
[ | |
cfg.DATA.NUM_FRAMES // cfg.MVIT.PATCH_STRIDE[0] | |
if len(cfg.MVIT.PATCH_STRIDE) > 2 | |
else 1, | |
cfg.DATA.TRAIN_CROP_SIZE // cfg.MVIT.PATCH_STRIDE[-2], | |
cfg.DATA.TRAIN_CROP_SIZE // cfg.MVIT.PATCH_STRIDE[-1], | |
] | |
for i in range(cfg.MVIT.DEPTH) | |
] | |
feat_stride = [ | |
[ | |
cfg.MVIT.PATCH_STRIDE[0] if len(cfg.MVIT.PATCH_STRIDE) > 2 else 1, | |
cfg.MVIT.PATCH_STRIDE[-2], | |
cfg.MVIT.PATCH_STRIDE[-1], | |
] | |
for i in range(cfg.MVIT.DEPTH) | |
] | |
for _, x in enumerate(cfg.MVIT.POOL_Q_STRIDE): | |
for i in range(cfg.MVIT.DEPTH): | |
if i >= x[0]: | |
for j in range(len(feat_size[i])): | |
feat_size[i][j] = feat_size[i][j] // x[j + 1] | |
feat_stride[i][j] = feat_stride[i][j] * x[j + 1] | |
return feat_size, feat_stride |