Initial commit
Browse files- .gitattributes +1 -0
- README.md +1 -1
- app.py +91 -0
- fold0.ckpt +3 -0
- fold1.ckpt +3 -0
- fold2.ckpt +3 -0
- requirements.txt +5 -0
.gitattributes
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
|
|
4 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
6 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
5 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: 💻
|
4 |
colorFrom: red
|
5 |
colorTo: blue
|
|
|
1 |
---
|
2 |
+
title: Deep Learning Model for Pediatric Bone Age
|
3 |
emoji: 💻
|
4 |
colorFrom: red
|
5 |
colorTo: blue
|
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import timm
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
|
7 |
+
def change_num_input_channels(model, in_channels=1):
|
8 |
+
"""
|
9 |
+
Assumes number of input channels in model is 3.
|
10 |
+
"""
|
11 |
+
for i, m in enumerate(model.modules()):
|
12 |
+
if isinstance(m, (nn.Conv2d,nn.Conv3d)) and m.in_channels == 3:
|
13 |
+
m.in_channels = in_channels
|
14 |
+
# First, sum across channels
|
15 |
+
W = m.weight.sum(1, keepdim=True)
|
16 |
+
# Then, divide by number of channels
|
17 |
+
W = W / in_channels
|
18 |
+
# Then, repeat by number of channels
|
19 |
+
size = [1] * W.ndim
|
20 |
+
size[1] = in_channels
|
21 |
+
W = W.repeat(size)
|
22 |
+
m.weight = nn.Parameter(W)
|
23 |
+
break
|
24 |
+
return model
|
25 |
+
|
26 |
+
|
27 |
+
class Net2D(nn.Module):
|
28 |
+
|
29 |
+
def __init__(self, weights):
|
30 |
+
super().__init__()
|
31 |
+
self.backbone = timm.create_model("tf_efficientnetv2_s", pretrained=False, global_pool="", num_classes=0)
|
32 |
+
self.backbone = change_num_input_channels(self.backbone, 2)
|
33 |
+
self.pool_layer = nn.AdaptiveAvgPool2d(1)
|
34 |
+
self.dropout = nn.Dropout(0.2)
|
35 |
+
self.classifier = nn.Linear(1280, 1)
|
36 |
+
self.load_state_dict(weights)
|
37 |
+
|
38 |
+
def forward(self, x):
|
39 |
+
x = self.backbone(x)
|
40 |
+
x = self.pool_layer(x).view(x.size(0), -1)
|
41 |
+
x = self.dropout(x)
|
42 |
+
x = self.classifier(x)
|
43 |
+
return x[:, 0] if x.size(1) == 1 else x
|
44 |
+
|
45 |
+
|
46 |
+
class Ensemble(nn.Module):
|
47 |
+
|
48 |
+
def __init__(self, model_list):
|
49 |
+
super().__init__()
|
50 |
+
self.model_list = nn.ModuleList(model_list)
|
51 |
+
|
52 |
+
def forward(self, x):
|
53 |
+
return torch.stack([model(x) for model in self.model_list]).mean(0)
|
54 |
+
|
55 |
+
|
56 |
+
checkpoints = ["fold0.ckpt", "fold1.ckpt", "fold2.ckpt"]
|
57 |
+
weights = [torch.load(ckpt)["state_dict"] for ckpt in checkpoints]
|
58 |
+
weights = [{k.replace("model.", "") : v for k, v in wt.items()} for wt in weights]
|
59 |
+
models = [Net2D(wt) for wt in weights]
|
60 |
+
ensemble = Ensemble(models).eval()
|
61 |
+
|
62 |
+
def predict_bone_age(Radiograph, Sex):
|
63 |
+
img = torch.from_numpy(Radiograph)
|
64 |
+
img = img.unsqueeze(0).unsqueeze(0)
|
65 |
+
img = img / img.max()
|
66 |
+
img = img - 0.5
|
67 |
+
img = img * 2.0
|
68 |
+
if Sex == 1:
|
69 |
+
img = torch.cat([img, torch.zeros_like(img) + 1], dim=1)
|
70 |
+
else:
|
71 |
+
img = torch.cat([img, torch.zeros_like(img) - 1], dim=1)
|
72 |
+
with torch.no_grad():
|
73 |
+
bone_age = ensemble(img.float())[0].item()
|
74 |
+
return f"Estimated Bone Age: {int(bone_age)} years, {int(bone_age % int(bone_age) * 12)} months"
|
75 |
+
|
76 |
+
|
77 |
+
image = gr.Image(shape=(512, 512), image_mode="L")
|
78 |
+
sex = gr.Radio(["Male", "Female"], type="index")
|
79 |
+
label = gr.Label(show_label=True, label="Result")
|
80 |
+
|
81 |
+
demo = gr.Interface(
|
82 |
+
fn=predict_bone_age,
|
83 |
+
inputs=[image, sex],
|
84 |
+
outputs=label,
|
85 |
+
)
|
86 |
+
|
87 |
+
|
88 |
+
if __name__ == "__main__":
|
89 |
+
demo.launch()
|
90 |
+
|
91 |
+
|
fold0.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2db6d3fb26a05b916341574c83683017e4a04a1c0df8fda4a97ad2314b33f109
|
3 |
+
size 81642981
|
fold1.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c806c2ccd21cb4f1d1102e86d8716ed67583f561d4eea6a1761ac4f9bf6a60b
|
3 |
+
size 81642981
|
fold2.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cabdc105bb4c3239d1a57ceaaca4306096a017763c1ec1d23adacf6d8c0713ab
|
3 |
+
size 81642981
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
timm
|
3 |
+
torch
|
4 |
+
https://gradio-main-build.s3.amazonaws.com/e30af8813c3d76329cf4869fa87a902b2075c8cd/gradio-3.8.2-py3-none-any.whl
|
5 |
+
|