Spaces:
Runtime error
Runtime error
add gaussian_kernels.py
Browse files- README.md +1 -1
- basicsr/data/gaussian_kernels.py +690 -0
README.md
CHANGED
|
@@ -142,7 +142,7 @@ python inference_colorization.py --input_path [image folder]|[image path]
|
|
| 142 |
# (check out the examples in inputs/masked_faces)
|
| 143 |
python inference_inpainting.py --input_path [image folder]|[image path]
|
| 144 |
```
|
| 145 |
-
|
| 146 |
The training commands can be found in the documents: [English](docs/train.md) **|** [简体中文](docs/train_CN.md).
|
| 147 |
|
| 148 |
### Citation
|
|
|
|
| 142 |
# (check out the examples in inputs/masked_faces)
|
| 143 |
python inference_inpainting.py --input_path [image folder]|[image path]
|
| 144 |
```
|
| 145 |
+
### Training:
|
| 146 |
The training commands can be found in the documents: [English](docs/train.md) **|** [简体中文](docs/train_CN.md).
|
| 147 |
|
| 148 |
### Citation
|
basicsr/data/gaussian_kernels.py
ADDED
|
@@ -0,0 +1,690 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import numpy as np
|
| 3 |
+
import random
|
| 4 |
+
from scipy.ndimage.interpolation import shift
|
| 5 |
+
from scipy.stats import multivariate_normal
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def sigma_matrix2(sig_x, sig_y, theta):
|
| 9 |
+
"""Calculate the rotated sigma matrix (two dimensional matrix).
|
| 10 |
+
Args:
|
| 11 |
+
sig_x (float):
|
| 12 |
+
sig_y (float):
|
| 13 |
+
theta (float): Radian measurement.
|
| 14 |
+
Returns:
|
| 15 |
+
ndarray: Rotated sigma matrix.
|
| 16 |
+
"""
|
| 17 |
+
D = np.array([[sig_x**2, 0], [0, sig_y**2]])
|
| 18 |
+
U = np.array([[np.cos(theta), -np.sin(theta)],
|
| 19 |
+
[np.sin(theta), np.cos(theta)]])
|
| 20 |
+
return np.dot(U, np.dot(D, U.T))
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def mesh_grid(kernel_size):
|
| 24 |
+
"""Generate the mesh grid, centering at zero.
|
| 25 |
+
Args:
|
| 26 |
+
kernel_size (int):
|
| 27 |
+
Returns:
|
| 28 |
+
xy (ndarray): with the shape (kernel_size, kernel_size, 2)
|
| 29 |
+
xx (ndarray): with the shape (kernel_size, kernel_size)
|
| 30 |
+
yy (ndarray): with the shape (kernel_size, kernel_size)
|
| 31 |
+
"""
|
| 32 |
+
ax = np.arange(-kernel_size // 2 + 1., kernel_size // 2 + 1.)
|
| 33 |
+
xx, yy = np.meshgrid(ax, ax)
|
| 34 |
+
xy = np.hstack((xx.reshape((kernel_size * kernel_size, 1)),
|
| 35 |
+
yy.reshape(kernel_size * kernel_size,
|
| 36 |
+
1))).reshape(kernel_size, kernel_size, 2)
|
| 37 |
+
return xy, xx, yy
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def pdf2(sigma_matrix, grid):
|
| 41 |
+
"""Calculate PDF of the bivariate Gaussian distribution.
|
| 42 |
+
Args:
|
| 43 |
+
sigma_matrix (ndarray): with the shape (2, 2)
|
| 44 |
+
grid (ndarray): generated by :func:`mesh_grid`,
|
| 45 |
+
with the shape (K, K, 2), K is the kernel size.
|
| 46 |
+
Returns:
|
| 47 |
+
kernel (ndarrray): un-normalized kernel.
|
| 48 |
+
"""
|
| 49 |
+
inverse_sigma = np.linalg.inv(sigma_matrix)
|
| 50 |
+
kernel = np.exp(-0.5 * np.sum(np.dot(grid, inverse_sigma) * grid, 2))
|
| 51 |
+
return kernel
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def cdf2(D, grid):
|
| 55 |
+
"""Calculate the CDF of the standard bivariate Gaussian distribution.
|
| 56 |
+
Used in skewed Gaussian distribution.
|
| 57 |
+
Args:
|
| 58 |
+
D (ndarrasy): skew matrix.
|
| 59 |
+
grid (ndarray): generated by :func:`mesh_grid`,
|
| 60 |
+
with the shape (K, K, 2), K is the kernel size.
|
| 61 |
+
Returns:
|
| 62 |
+
cdf (ndarray): skewed cdf.
|
| 63 |
+
"""
|
| 64 |
+
rv = multivariate_normal([0, 0], [[1, 0], [0, 1]])
|
| 65 |
+
grid = np.dot(grid, D)
|
| 66 |
+
cdf = rv.cdf(grid)
|
| 67 |
+
return cdf
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def bivariate_skew_Gaussian(kernel_size, sig_x, sig_y, theta, D, grid=None):
|
| 71 |
+
"""Generate a bivariate skew Gaussian kernel.
|
| 72 |
+
Described in `A multivariate skew normal distribution`_ by Shi et. al (2004).
|
| 73 |
+
Args:
|
| 74 |
+
kernel_size (int):
|
| 75 |
+
sig_x (float):
|
| 76 |
+
sig_y (float):
|
| 77 |
+
theta (float): Radian measurement.
|
| 78 |
+
D (ndarrasy): skew matrix.
|
| 79 |
+
grid (ndarray, optional): generated by :func:`mesh_grid`,
|
| 80 |
+
with the shape (K, K, 2), K is the kernel size. Default: None
|
| 81 |
+
Returns:
|
| 82 |
+
kernel (ndarray): normalized kernel.
|
| 83 |
+
.. _A multivariate skew normal distribution:
|
| 84 |
+
https://www.sciencedirect.com/science/article/pii/S0047259X03001313
|
| 85 |
+
"""
|
| 86 |
+
if grid is None:
|
| 87 |
+
grid, _, _ = mesh_grid(kernel_size)
|
| 88 |
+
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta)
|
| 89 |
+
pdf = pdf2(sigma_matrix, grid)
|
| 90 |
+
cdf = cdf2(D, grid)
|
| 91 |
+
kernel = pdf * cdf
|
| 92 |
+
kernel = kernel / np.sum(kernel)
|
| 93 |
+
return kernel
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def mass_center_shift(kernel_size, kernel):
|
| 97 |
+
"""Calculate the shift of the mass center of a kenrel.
|
| 98 |
+
Args:
|
| 99 |
+
kernel_size (int):
|
| 100 |
+
kernel (ndarray): normalized kernel.
|
| 101 |
+
Returns:
|
| 102 |
+
delta_h (float):
|
| 103 |
+
delta_w (float):
|
| 104 |
+
"""
|
| 105 |
+
ax = np.arange(-kernel_size // 2 + 1., kernel_size // 2 + 1.)
|
| 106 |
+
col_sum, row_sum = np.sum(kernel, axis=0), np.sum(kernel, axis=1)
|
| 107 |
+
delta_h = np.dot(row_sum, ax)
|
| 108 |
+
delta_w = np.dot(col_sum, ax)
|
| 109 |
+
return delta_h, delta_w
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def bivariate_skew_Gaussian_center(kernel_size,
|
| 113 |
+
sig_x,
|
| 114 |
+
sig_y,
|
| 115 |
+
theta,
|
| 116 |
+
D,
|
| 117 |
+
grid=None):
|
| 118 |
+
"""Generate a bivariate skew Gaussian kernel at center. Shift with nearest padding.
|
| 119 |
+
Args:
|
| 120 |
+
kernel_size (int):
|
| 121 |
+
sig_x (float):
|
| 122 |
+
sig_y (float):
|
| 123 |
+
theta (float): Radian measurement.
|
| 124 |
+
D (ndarrasy): skew matrix.
|
| 125 |
+
grid (ndarray, optional): generated by :func:`mesh_grid`,
|
| 126 |
+
with the shape (K, K, 2), K is the kernel size. Default: None
|
| 127 |
+
Returns:
|
| 128 |
+
kernel (ndarray): centered and normalized kernel.
|
| 129 |
+
"""
|
| 130 |
+
if grid is None:
|
| 131 |
+
grid, _, _ = mesh_grid(kernel_size)
|
| 132 |
+
kernel = bivariate_skew_Gaussian(kernel_size, sig_x, sig_y, theta, D, grid)
|
| 133 |
+
delta_h, delta_w = mass_center_shift(kernel_size, kernel)
|
| 134 |
+
kernel = shift(kernel, [-delta_h, -delta_w], mode='nearest')
|
| 135 |
+
kernel = kernel / np.sum(kernel)
|
| 136 |
+
return kernel
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
def bivariate_anisotropic_Gaussian(kernel_size,
|
| 140 |
+
sig_x,
|
| 141 |
+
sig_y,
|
| 142 |
+
theta,
|
| 143 |
+
grid=None):
|
| 144 |
+
"""Generate a bivariate anisotropic Gaussian kernel.
|
| 145 |
+
Args:
|
| 146 |
+
kernel_size (int):
|
| 147 |
+
sig_x (float):
|
| 148 |
+
sig_y (float):
|
| 149 |
+
theta (float): Radian measurement.
|
| 150 |
+
grid (ndarray, optional): generated by :func:`mesh_grid`,
|
| 151 |
+
with the shape (K, K, 2), K is the kernel size. Default: None
|
| 152 |
+
Returns:
|
| 153 |
+
kernel (ndarray): normalized kernel.
|
| 154 |
+
"""
|
| 155 |
+
if grid is None:
|
| 156 |
+
grid, _, _ = mesh_grid(kernel_size)
|
| 157 |
+
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta)
|
| 158 |
+
kernel = pdf2(sigma_matrix, grid)
|
| 159 |
+
kernel = kernel / np.sum(kernel)
|
| 160 |
+
return kernel
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
def bivariate_isotropic_Gaussian(kernel_size, sig, grid=None):
|
| 164 |
+
"""Generate a bivariate isotropic Gaussian kernel.
|
| 165 |
+
Args:
|
| 166 |
+
kernel_size (int):
|
| 167 |
+
sig (float):
|
| 168 |
+
grid (ndarray, optional): generated by :func:`mesh_grid`,
|
| 169 |
+
with the shape (K, K, 2), K is the kernel size. Default: None
|
| 170 |
+
Returns:
|
| 171 |
+
kernel (ndarray): normalized kernel.
|
| 172 |
+
"""
|
| 173 |
+
if grid is None:
|
| 174 |
+
grid, _, _ = mesh_grid(kernel_size)
|
| 175 |
+
sigma_matrix = np.array([[sig**2, 0], [0, sig**2]])
|
| 176 |
+
kernel = pdf2(sigma_matrix, grid)
|
| 177 |
+
kernel = kernel / np.sum(kernel)
|
| 178 |
+
return kernel
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
def bivariate_generalized_Gaussian(kernel_size,
|
| 182 |
+
sig_x,
|
| 183 |
+
sig_y,
|
| 184 |
+
theta,
|
| 185 |
+
beta,
|
| 186 |
+
grid=None):
|
| 187 |
+
"""Generate a bivariate generalized Gaussian kernel.
|
| 188 |
+
Described in `Parameter Estimation For Multivariate Generalized Gaussian Distributions`_
|
| 189 |
+
by Pascal et. al (2013).
|
| 190 |
+
Args:
|
| 191 |
+
kernel_size (int):
|
| 192 |
+
sig_x (float):
|
| 193 |
+
sig_y (float):
|
| 194 |
+
theta (float): Radian measurement.
|
| 195 |
+
beta (float): shape parameter, beta = 1 is the normal distribution.
|
| 196 |
+
grid (ndarray, optional): generated by :func:`mesh_grid`,
|
| 197 |
+
with the shape (K, K, 2), K is the kernel size. Default: None
|
| 198 |
+
Returns:
|
| 199 |
+
kernel (ndarray): normalized kernel.
|
| 200 |
+
.. _Parameter Estimation For Multivariate Generalized Gaussian Distributions:
|
| 201 |
+
https://arxiv.org/abs/1302.6498
|
| 202 |
+
"""
|
| 203 |
+
if grid is None:
|
| 204 |
+
grid, _, _ = mesh_grid(kernel_size)
|
| 205 |
+
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta)
|
| 206 |
+
inverse_sigma = np.linalg.inv(sigma_matrix)
|
| 207 |
+
kernel = np.exp(
|
| 208 |
+
-0.5 * np.power(np.sum(np.dot(grid, inverse_sigma) * grid, 2), beta))
|
| 209 |
+
kernel = kernel / np.sum(kernel)
|
| 210 |
+
return kernel
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
def bivariate_plateau_type1(kernel_size, sig_x, sig_y, theta, beta, grid=None):
|
| 214 |
+
"""Generate a plateau-like anisotropic kernel.
|
| 215 |
+
1 / (1+x^(beta))
|
| 216 |
+
Args:
|
| 217 |
+
kernel_size (int):
|
| 218 |
+
sig_x (float):
|
| 219 |
+
sig_y (float):
|
| 220 |
+
theta (float): Radian measurement.
|
| 221 |
+
beta (float): shape parameter, beta = 1 is the normal distribution.
|
| 222 |
+
grid (ndarray, optional): generated by :func:`mesh_grid`,
|
| 223 |
+
with the shape (K, K, 2), K is the kernel size. Default: None
|
| 224 |
+
Returns:
|
| 225 |
+
kernel (ndarray): normalized kernel.
|
| 226 |
+
"""
|
| 227 |
+
if grid is None:
|
| 228 |
+
grid, _, _ = mesh_grid(kernel_size)
|
| 229 |
+
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta)
|
| 230 |
+
inverse_sigma = np.linalg.inv(sigma_matrix)
|
| 231 |
+
kernel = np.reciprocal(
|
| 232 |
+
np.power(np.sum(np.dot(grid, inverse_sigma) * grid, 2), beta) + 1)
|
| 233 |
+
kernel = kernel / np.sum(kernel)
|
| 234 |
+
return kernel
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
def bivariate_plateau_type1_iso(kernel_size, sig, beta, grid=None):
|
| 238 |
+
"""Generate a plateau-like isotropic kernel.
|
| 239 |
+
1 / (1+x^(beta))
|
| 240 |
+
Args:
|
| 241 |
+
kernel_size (int):
|
| 242 |
+
sig (float):
|
| 243 |
+
beta (float): shape parameter, beta = 1 is the normal distribution.
|
| 244 |
+
grid (ndarray, optional): generated by :func:`mesh_grid`,
|
| 245 |
+
with the shape (K, K, 2), K is the kernel size. Default: None
|
| 246 |
+
Returns:
|
| 247 |
+
kernel (ndarray): normalized kernel.
|
| 248 |
+
"""
|
| 249 |
+
if grid is None:
|
| 250 |
+
grid, _, _ = mesh_grid(kernel_size)
|
| 251 |
+
sigma_matrix = np.array([[sig**2, 0], [0, sig**2]])
|
| 252 |
+
inverse_sigma = np.linalg.inv(sigma_matrix)
|
| 253 |
+
kernel = np.reciprocal(
|
| 254 |
+
np.power(np.sum(np.dot(grid, inverse_sigma) * grid, 2), beta) + 1)
|
| 255 |
+
kernel = kernel / np.sum(kernel)
|
| 256 |
+
return kernel
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
def random_bivariate_skew_Gaussian_center(kernel_size,
|
| 260 |
+
sigma_x_range,
|
| 261 |
+
sigma_y_range,
|
| 262 |
+
rotation_range,
|
| 263 |
+
noise_range=None,
|
| 264 |
+
strict=False):
|
| 265 |
+
"""Randomly generate bivariate skew Gaussian kernels at center.
|
| 266 |
+
Args:
|
| 267 |
+
kernel_size (int):
|
| 268 |
+
sigma_x_range (tuple): [0.6, 5]
|
| 269 |
+
sigma_y_range (tuple): [0.6, 5]
|
| 270 |
+
rotation range (tuple): [-math.pi, math.pi]
|
| 271 |
+
noise_range(tuple, optional): multiplicative kernel noise, [0.75, 1.25]. Default: None
|
| 272 |
+
Returns:
|
| 273 |
+
kernel (ndarray):
|
| 274 |
+
"""
|
| 275 |
+
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
|
| 276 |
+
assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.'
|
| 277 |
+
assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.'
|
| 278 |
+
assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.'
|
| 279 |
+
sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1])
|
| 280 |
+
sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1])
|
| 281 |
+
if strict:
|
| 282 |
+
sigma_max = np.max([sigma_x, sigma_y])
|
| 283 |
+
sigma_min = np.min([sigma_x, sigma_y])
|
| 284 |
+
sigma_x, sigma_y = sigma_max, sigma_min
|
| 285 |
+
rotation = np.random.uniform(rotation_range[0], rotation_range[1])
|
| 286 |
+
|
| 287 |
+
sigma_max = np.max([sigma_x, sigma_y])
|
| 288 |
+
thres = 3 / sigma_max
|
| 289 |
+
D = [[np.random.uniform(-thres, thres),
|
| 290 |
+
np.random.uniform(-thres, thres)],
|
| 291 |
+
[np.random.uniform(-thres, thres),
|
| 292 |
+
np.random.uniform(-thres, thres)]]
|
| 293 |
+
|
| 294 |
+
kernel = bivariate_skew_Gaussian_center(kernel_size, sigma_x, sigma_y,
|
| 295 |
+
rotation, D)
|
| 296 |
+
|
| 297 |
+
# add multiplicative noise
|
| 298 |
+
if noise_range is not None:
|
| 299 |
+
assert noise_range[0] < noise_range[1], 'Wrong noise range.'
|
| 300 |
+
noise = np.random.uniform(
|
| 301 |
+
noise_range[0], noise_range[1], size=kernel.shape)
|
| 302 |
+
kernel = kernel * noise
|
| 303 |
+
kernel = kernel / np.sum(kernel)
|
| 304 |
+
if strict:
|
| 305 |
+
return kernel, sigma_x, sigma_y, rotation, D
|
| 306 |
+
else:
|
| 307 |
+
return kernel
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
def random_bivariate_anisotropic_Gaussian(kernel_size,
|
| 311 |
+
sigma_x_range,
|
| 312 |
+
sigma_y_range,
|
| 313 |
+
rotation_range,
|
| 314 |
+
noise_range=None,
|
| 315 |
+
strict=False):
|
| 316 |
+
"""Randomly generate bivariate anisotropic Gaussian kernels.
|
| 317 |
+
Args:
|
| 318 |
+
kernel_size (int):
|
| 319 |
+
sigma_x_range (tuple): [0.6, 5]
|
| 320 |
+
sigma_y_range (tuple): [0.6, 5]
|
| 321 |
+
rotation range (tuple): [-math.pi, math.pi]
|
| 322 |
+
noise_range(tuple, optional): multiplicative kernel noise, [0.75, 1.25]. Default: None
|
| 323 |
+
Returns:
|
| 324 |
+
kernel (ndarray):
|
| 325 |
+
"""
|
| 326 |
+
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
|
| 327 |
+
assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.'
|
| 328 |
+
assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.'
|
| 329 |
+
assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.'
|
| 330 |
+
sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1])
|
| 331 |
+
sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1])
|
| 332 |
+
if strict:
|
| 333 |
+
sigma_max = np.max([sigma_x, sigma_y])
|
| 334 |
+
sigma_min = np.min([sigma_x, sigma_y])
|
| 335 |
+
sigma_x, sigma_y = sigma_max, sigma_min
|
| 336 |
+
rotation = np.random.uniform(rotation_range[0], rotation_range[1])
|
| 337 |
+
|
| 338 |
+
kernel = bivariate_anisotropic_Gaussian(kernel_size, sigma_x, sigma_y,
|
| 339 |
+
rotation)
|
| 340 |
+
|
| 341 |
+
# add multiplicative noise
|
| 342 |
+
if noise_range is not None:
|
| 343 |
+
assert noise_range[0] < noise_range[1], 'Wrong noise range.'
|
| 344 |
+
noise = np.random.uniform(
|
| 345 |
+
noise_range[0], noise_range[1], size=kernel.shape)
|
| 346 |
+
kernel = kernel * noise
|
| 347 |
+
kernel = kernel / np.sum(kernel)
|
| 348 |
+
if strict:
|
| 349 |
+
return kernel, sigma_x, sigma_y, rotation
|
| 350 |
+
else:
|
| 351 |
+
return kernel
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
def random_bivariate_isotropic_Gaussian(kernel_size,
|
| 355 |
+
sigma_range,
|
| 356 |
+
noise_range=None,
|
| 357 |
+
strict=False):
|
| 358 |
+
"""Randomly generate bivariate isotropic Gaussian kernels.
|
| 359 |
+
Args:
|
| 360 |
+
kernel_size (int):
|
| 361 |
+
sigma_range (tuple): [0.6, 5]
|
| 362 |
+
noise_range(tuple, optional): multiplicative kernel noise, [0.75, 1.25]. Default: None
|
| 363 |
+
Returns:
|
| 364 |
+
kernel (ndarray):
|
| 365 |
+
"""
|
| 366 |
+
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
|
| 367 |
+
assert sigma_range[0] < sigma_range[1], 'Wrong sigma_x_range.'
|
| 368 |
+
sigma = np.random.uniform(sigma_range[0], sigma_range[1])
|
| 369 |
+
|
| 370 |
+
kernel = bivariate_isotropic_Gaussian(kernel_size, sigma)
|
| 371 |
+
|
| 372 |
+
# add multiplicative noise
|
| 373 |
+
if noise_range is not None:
|
| 374 |
+
assert noise_range[0] < noise_range[1], 'Wrong noise range.'
|
| 375 |
+
noise = np.random.uniform(
|
| 376 |
+
noise_range[0], noise_range[1], size=kernel.shape)
|
| 377 |
+
kernel = kernel * noise
|
| 378 |
+
kernel = kernel / np.sum(kernel)
|
| 379 |
+
if strict:
|
| 380 |
+
return kernel, sigma
|
| 381 |
+
else:
|
| 382 |
+
return kernel
|
| 383 |
+
|
| 384 |
+
|
| 385 |
+
def random_bivariate_generalized_Gaussian(kernel_size,
|
| 386 |
+
sigma_x_range,
|
| 387 |
+
sigma_y_range,
|
| 388 |
+
rotation_range,
|
| 389 |
+
beta_range,
|
| 390 |
+
noise_range=None,
|
| 391 |
+
strict=False):
|
| 392 |
+
"""Randomly generate bivariate generalized Gaussian kernels.
|
| 393 |
+
Args:
|
| 394 |
+
kernel_size (int):
|
| 395 |
+
sigma_x_range (tuple): [0.6, 5]
|
| 396 |
+
sigma_y_range (tuple): [0.6, 5]
|
| 397 |
+
rotation range (tuple): [-math.pi, math.pi]
|
| 398 |
+
beta_range (tuple): [0.5, 8]
|
| 399 |
+
noise_range(tuple, optional): multiplicative kernel noise, [0.75, 1.25]. Default: None
|
| 400 |
+
Returns:
|
| 401 |
+
kernel (ndarray):
|
| 402 |
+
"""
|
| 403 |
+
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
|
| 404 |
+
assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.'
|
| 405 |
+
assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.'
|
| 406 |
+
assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.'
|
| 407 |
+
sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1])
|
| 408 |
+
sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1])
|
| 409 |
+
if strict:
|
| 410 |
+
sigma_max = np.max([sigma_x, sigma_y])
|
| 411 |
+
sigma_min = np.min([sigma_x, sigma_y])
|
| 412 |
+
sigma_x, sigma_y = sigma_max, sigma_min
|
| 413 |
+
rotation = np.random.uniform(rotation_range[0], rotation_range[1])
|
| 414 |
+
if np.random.uniform() < 0.5:
|
| 415 |
+
beta = np.random.uniform(beta_range[0], 1)
|
| 416 |
+
else:
|
| 417 |
+
beta = np.random.uniform(1, beta_range[1])
|
| 418 |
+
|
| 419 |
+
kernel = bivariate_generalized_Gaussian(kernel_size, sigma_x, sigma_y,
|
| 420 |
+
rotation, beta)
|
| 421 |
+
|
| 422 |
+
# add multiplicative noise
|
| 423 |
+
if noise_range is not None:
|
| 424 |
+
assert noise_range[0] < noise_range[1], 'Wrong noise range.'
|
| 425 |
+
noise = np.random.uniform(
|
| 426 |
+
noise_range[0], noise_range[1], size=kernel.shape)
|
| 427 |
+
kernel = kernel * noise
|
| 428 |
+
kernel = kernel / np.sum(kernel)
|
| 429 |
+
if strict:
|
| 430 |
+
return kernel, sigma_x, sigma_y, rotation, beta
|
| 431 |
+
else:
|
| 432 |
+
return kernel
|
| 433 |
+
|
| 434 |
+
|
| 435 |
+
def random_bivariate_plateau_type1(kernel_size,
|
| 436 |
+
sigma_x_range,
|
| 437 |
+
sigma_y_range,
|
| 438 |
+
rotation_range,
|
| 439 |
+
beta_range,
|
| 440 |
+
noise_range=None,
|
| 441 |
+
strict=False):
|
| 442 |
+
"""Randomly generate bivariate plateau type1 kernels.
|
| 443 |
+
Args:
|
| 444 |
+
kernel_size (int):
|
| 445 |
+
sigma_x_range (tuple): [0.6, 5]
|
| 446 |
+
sigma_y_range (tuple): [0.6, 5]
|
| 447 |
+
rotation range (tuple): [-math.pi/2, math.pi/2]
|
| 448 |
+
beta_range (tuple): [1, 4]
|
| 449 |
+
noise_range(tuple, optional): multiplicative kernel noise, [0.75, 1.25]. Default: None
|
| 450 |
+
Returns:
|
| 451 |
+
kernel (ndarray):
|
| 452 |
+
"""
|
| 453 |
+
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
|
| 454 |
+
assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.'
|
| 455 |
+
assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.'
|
| 456 |
+
assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.'
|
| 457 |
+
sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1])
|
| 458 |
+
sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1])
|
| 459 |
+
if strict:
|
| 460 |
+
sigma_max = np.max([sigma_x, sigma_y])
|
| 461 |
+
sigma_min = np.min([sigma_x, sigma_y])
|
| 462 |
+
sigma_x, sigma_y = sigma_max, sigma_min
|
| 463 |
+
rotation = np.random.uniform(rotation_range[0], rotation_range[1])
|
| 464 |
+
if np.random.uniform() < 0.5:
|
| 465 |
+
beta = np.random.uniform(beta_range[0], 1)
|
| 466 |
+
else:
|
| 467 |
+
beta = np.random.uniform(1, beta_range[1])
|
| 468 |
+
|
| 469 |
+
kernel = bivariate_plateau_type1(kernel_size, sigma_x, sigma_y, rotation,
|
| 470 |
+
beta)
|
| 471 |
+
|
| 472 |
+
# add multiplicative noise
|
| 473 |
+
if noise_range is not None:
|
| 474 |
+
assert noise_range[0] < noise_range[1], 'Wrong noise range.'
|
| 475 |
+
noise = np.random.uniform(
|
| 476 |
+
noise_range[0], noise_range[1], size=kernel.shape)
|
| 477 |
+
kernel = kernel * noise
|
| 478 |
+
kernel = kernel / np.sum(kernel)
|
| 479 |
+
if strict:
|
| 480 |
+
return kernel, sigma_x, sigma_y, rotation, beta
|
| 481 |
+
else:
|
| 482 |
+
return kernel
|
| 483 |
+
|
| 484 |
+
|
| 485 |
+
def random_bivariate_plateau_type1_iso(kernel_size,
|
| 486 |
+
sigma_range,
|
| 487 |
+
beta_range,
|
| 488 |
+
noise_range=None,
|
| 489 |
+
strict=False):
|
| 490 |
+
"""Randomly generate bivariate plateau type1 kernels (iso).
|
| 491 |
+
Args:
|
| 492 |
+
kernel_size (int):
|
| 493 |
+
sigma_range (tuple): [0.6, 5]
|
| 494 |
+
beta_range (tuple): [1, 4]
|
| 495 |
+
noise_range(tuple, optional): multiplicative kernel noise, [0.75, 1.25]. Default: None
|
| 496 |
+
Returns:
|
| 497 |
+
kernel (ndarray):
|
| 498 |
+
"""
|
| 499 |
+
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
|
| 500 |
+
assert sigma_range[0] < sigma_range[1], 'Wrong sigma_x_range.'
|
| 501 |
+
sigma = np.random.uniform(sigma_range[0], sigma_range[1])
|
| 502 |
+
beta = np.random.uniform(beta_range[0], beta_range[1])
|
| 503 |
+
|
| 504 |
+
kernel = bivariate_plateau_type1_iso(kernel_size, sigma, beta)
|
| 505 |
+
|
| 506 |
+
# add multiplicative noise
|
| 507 |
+
if noise_range is not None:
|
| 508 |
+
assert noise_range[0] < noise_range[1], 'Wrong noise range.'
|
| 509 |
+
noise = np.random.uniform(
|
| 510 |
+
noise_range[0], noise_range[1], size=kernel.shape)
|
| 511 |
+
kernel = kernel * noise
|
| 512 |
+
kernel = kernel / np.sum(kernel)
|
| 513 |
+
if strict:
|
| 514 |
+
return kernel, sigma, beta
|
| 515 |
+
else:
|
| 516 |
+
return kernel
|
| 517 |
+
|
| 518 |
+
|
| 519 |
+
def random_mixed_kernels(kernel_list,
|
| 520 |
+
kernel_prob,
|
| 521 |
+
kernel_size=21,
|
| 522 |
+
sigma_x_range=[0.6, 5],
|
| 523 |
+
sigma_y_range=[0.6, 5],
|
| 524 |
+
rotation_range=[-math.pi, math.pi],
|
| 525 |
+
beta_range=[0.5, 8],
|
| 526 |
+
noise_range=None):
|
| 527 |
+
"""Randomly generate mixed kernels.
|
| 528 |
+
Args:
|
| 529 |
+
kernel_list (tuple): a list name of kenrel types,
|
| 530 |
+
support ['iso', 'aniso', 'skew', 'generalized', 'plateau_iso', 'plateau_aniso']
|
| 531 |
+
kernel_prob (tuple): corresponding kernel probability for each kernel type
|
| 532 |
+
kernel_size (int):
|
| 533 |
+
sigma_x_range (tuple): [0.6, 5]
|
| 534 |
+
sigma_y_range (tuple): [0.6, 5]
|
| 535 |
+
rotation range (tuple): [-math.pi, math.pi]
|
| 536 |
+
beta_range (tuple): [0.5, 8]
|
| 537 |
+
noise_range(tuple, optional): multiplicative kernel noise, [0.75, 1.25]. Default: None
|
| 538 |
+
Returns:
|
| 539 |
+
kernel (ndarray):
|
| 540 |
+
"""
|
| 541 |
+
kernel_type = random.choices(kernel_list, kernel_prob)[0]
|
| 542 |
+
if kernel_type == 'iso':
|
| 543 |
+
kernel = random_bivariate_isotropic_Gaussian(
|
| 544 |
+
kernel_size, sigma_x_range, noise_range=noise_range)
|
| 545 |
+
elif kernel_type == 'aniso':
|
| 546 |
+
kernel = random_bivariate_anisotropic_Gaussian(
|
| 547 |
+
kernel_size,
|
| 548 |
+
sigma_x_range,
|
| 549 |
+
sigma_y_range,
|
| 550 |
+
rotation_range,
|
| 551 |
+
noise_range=noise_range)
|
| 552 |
+
elif kernel_type == 'skew':
|
| 553 |
+
kernel = random_bivariate_skew_Gaussian_center(
|
| 554 |
+
kernel_size,
|
| 555 |
+
sigma_x_range,
|
| 556 |
+
sigma_y_range,
|
| 557 |
+
rotation_range,
|
| 558 |
+
noise_range=noise_range)
|
| 559 |
+
elif kernel_type == 'generalized':
|
| 560 |
+
kernel = random_bivariate_generalized_Gaussian(
|
| 561 |
+
kernel_size,
|
| 562 |
+
sigma_x_range,
|
| 563 |
+
sigma_y_range,
|
| 564 |
+
rotation_range,
|
| 565 |
+
beta_range,
|
| 566 |
+
noise_range=noise_range)
|
| 567 |
+
elif kernel_type == 'plateau_iso':
|
| 568 |
+
kernel = random_bivariate_plateau_type1_iso(
|
| 569 |
+
kernel_size, sigma_x_range, beta_range, noise_range=noise_range)
|
| 570 |
+
elif kernel_type == 'plateau_aniso':
|
| 571 |
+
kernel = random_bivariate_plateau_type1(
|
| 572 |
+
kernel_size,
|
| 573 |
+
sigma_x_range,
|
| 574 |
+
sigma_y_range,
|
| 575 |
+
rotation_range,
|
| 576 |
+
beta_range,
|
| 577 |
+
noise_range=noise_range)
|
| 578 |
+
# add multiplicative noise
|
| 579 |
+
if noise_range is not None:
|
| 580 |
+
assert noise_range[0] < noise_range[1], 'Wrong noise range.'
|
| 581 |
+
noise = np.random.uniform(
|
| 582 |
+
noise_range[0], noise_range[1], size=kernel.shape)
|
| 583 |
+
kernel = kernel * noise
|
| 584 |
+
kernel = kernel / np.sum(kernel)
|
| 585 |
+
return kernel
|
| 586 |
+
|
| 587 |
+
|
| 588 |
+
def show_one_kernel():
|
| 589 |
+
import matplotlib.pyplot as plt
|
| 590 |
+
kernel_size = 21
|
| 591 |
+
|
| 592 |
+
# bivariate skew Gaussian
|
| 593 |
+
D = [[0, 0], [0, 0]]
|
| 594 |
+
D = [[3 / 4, 0], [0, 0.5]]
|
| 595 |
+
kernel = bivariate_skew_Gaussian_center(kernel_size, 2, 4, -math.pi / 4, D)
|
| 596 |
+
# bivariate anisotropic Gaussian
|
| 597 |
+
kernel = bivariate_anisotropic_Gaussian(kernel_size, 2, 4, -math.pi / 4)
|
| 598 |
+
# bivariate anisotropic Gaussian
|
| 599 |
+
kernel = bivariate_isotropic_Gaussian(kernel_size, 1)
|
| 600 |
+
# bivariate generalized Gaussian
|
| 601 |
+
kernel = bivariate_generalized_Gaussian(
|
| 602 |
+
kernel_size, 2, 4, -math.pi / 4, beta=4)
|
| 603 |
+
|
| 604 |
+
delta_h, delta_w = mass_center_shift(kernel_size, kernel)
|
| 605 |
+
print(delta_h, delta_w)
|
| 606 |
+
|
| 607 |
+
fig, axs = plt.subplots(nrows=2, ncols=2)
|
| 608 |
+
# axs.set_axis_off()
|
| 609 |
+
ax = axs[0][0]
|
| 610 |
+
im = ax.matshow(kernel, cmap='jet', origin='upper')
|
| 611 |
+
fig.colorbar(im, ax=ax)
|
| 612 |
+
|
| 613 |
+
# image
|
| 614 |
+
ax = axs[0][1]
|
| 615 |
+
kernel_vis = kernel - np.min(kernel)
|
| 616 |
+
kernel_vis = kernel_vis / np.max(kernel_vis) * 255.
|
| 617 |
+
ax.imshow(kernel_vis, interpolation='nearest')
|
| 618 |
+
|
| 619 |
+
_, xx, yy = mesh_grid(kernel_size)
|
| 620 |
+
# contour
|
| 621 |
+
ax = axs[1][0]
|
| 622 |
+
CS = ax.contour(xx, yy, kernel, origin='upper')
|
| 623 |
+
ax.clabel(CS, inline=1, fontsize=3)
|
| 624 |
+
|
| 625 |
+
# contourf
|
| 626 |
+
ax = axs[1][1]
|
| 627 |
+
kernel = kernel / np.max(kernel)
|
| 628 |
+
p = ax.contourf(
|
| 629 |
+
xx, yy, kernel, origin='upper', levels=np.linspace(-0.05, 1.05, 10))
|
| 630 |
+
fig.colorbar(p)
|
| 631 |
+
|
| 632 |
+
plt.show()
|
| 633 |
+
|
| 634 |
+
|
| 635 |
+
def show_plateau_kernel():
|
| 636 |
+
import matplotlib.pyplot as plt
|
| 637 |
+
kernel_size = 21
|
| 638 |
+
|
| 639 |
+
kernel = plateau_type1(kernel_size, 2, 4, -math.pi / 8, 2, grid=None)
|
| 640 |
+
kernel_norm = bivariate_isotropic_Gaussian(kernel_size, 5)
|
| 641 |
+
kernel_gau = bivariate_generalized_Gaussian(
|
| 642 |
+
kernel_size, 2, 4, -math.pi / 8, 2, grid=None)
|
| 643 |
+
delta_h, delta_w = mass_center_shift(kernel_size, kernel)
|
| 644 |
+
print(delta_h, delta_w)
|
| 645 |
+
|
| 646 |
+
# kernel_slice = kernel[10, :]
|
| 647 |
+
# kernel_gau_slice = kernel_gau[10, :]
|
| 648 |
+
# kernel_norm_slice = kernel_norm[10, :]
|
| 649 |
+
# fig, ax = plt.subplots()
|
| 650 |
+
# t = list(range(1, 22))
|
| 651 |
+
|
| 652 |
+
# ax.plot(t, kernel_gau_slice)
|
| 653 |
+
# ax.plot(t, kernel_slice)
|
| 654 |
+
# ax.plot(t, kernel_norm_slice)
|
| 655 |
+
|
| 656 |
+
# t = np.arange(0, 10, 0.1)
|
| 657 |
+
# y = np.exp(-0.5 * t)
|
| 658 |
+
# y2 = np.reciprocal(1 + t)
|
| 659 |
+
# print(t.shape)
|
| 660 |
+
# print(y.shape)
|
| 661 |
+
# ax.plot(t, y)
|
| 662 |
+
# ax.plot(t, y2)
|
| 663 |
+
# plt.show()
|
| 664 |
+
|
| 665 |
+
fig, axs = plt.subplots(nrows=2, ncols=2)
|
| 666 |
+
# axs.set_axis_off()
|
| 667 |
+
ax = axs[0][0]
|
| 668 |
+
im = ax.matshow(kernel, cmap='jet', origin='upper')
|
| 669 |
+
fig.colorbar(im, ax=ax)
|
| 670 |
+
|
| 671 |
+
# image
|
| 672 |
+
ax = axs[0][1]
|
| 673 |
+
kernel_vis = kernel - np.min(kernel)
|
| 674 |
+
kernel_vis = kernel_vis / np.max(kernel_vis) * 255.
|
| 675 |
+
ax.imshow(kernel_vis, interpolation='nearest')
|
| 676 |
+
|
| 677 |
+
_, xx, yy = mesh_grid(kernel_size)
|
| 678 |
+
# contour
|
| 679 |
+
ax = axs[1][0]
|
| 680 |
+
CS = ax.contour(xx, yy, kernel, origin='upper')
|
| 681 |
+
ax.clabel(CS, inline=1, fontsize=3)
|
| 682 |
+
|
| 683 |
+
# contourf
|
| 684 |
+
ax = axs[1][1]
|
| 685 |
+
kernel = kernel / np.max(kernel)
|
| 686 |
+
p = ax.contourf(
|
| 687 |
+
xx, yy, kernel, origin='upper', levels=np.linspace(-0.05, 1.05, 10))
|
| 688 |
+
fig.colorbar(p)
|
| 689 |
+
|
| 690 |
+
plt.show()
|