added demo model for garbage classification
Browse files- .gitignore +11 -0
- app.py +61 -0
- requirements.txt +8 -0
.gitignore
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
flagged/
|
2 |
+
*.png
|
3 |
+
*.jpg
|
4 |
+
*.mp4
|
5 |
+
*.jpeg
|
6 |
+
*.mkv
|
7 |
+
.DS_Store
|
8 |
+
gradio_cached_examples/
|
9 |
+
venv/
|
10 |
+
.locks/
|
11 |
+
models-*
|
app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ast import mod
|
2 |
+
import gradio as gr
|
3 |
+
from huggingface_hub import hf_hub_download
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
import tensorflow as tf
|
7 |
+
|
8 |
+
|
9 |
+
# Load the pre-trained model from Hugging Face
|
10 |
+
model_name = "iamsuman/household-waste-EfficientNetV2M"
|
11 |
+
|
12 |
+
model_path = hf_hub_download(repo_id=model_name, filename="EfficientNetV2M.h5")
|
13 |
+
|
14 |
+
|
15 |
+
model = tf.keras.models.load_model(model_path)
|
16 |
+
|
17 |
+
|
18 |
+
# Define a manual mapping of label indices to human-readable labels
|
19 |
+
index_to_label = {
|
20 |
+
0: "battery",
|
21 |
+
1: "biological",
|
22 |
+
2: "cardboard",
|
23 |
+
3: "clothes",
|
24 |
+
4: "glass",
|
25 |
+
5: "metal",
|
26 |
+
6: "paper",
|
27 |
+
7: "plastic",
|
28 |
+
8: "shoes",
|
29 |
+
9: "trash"
|
30 |
+
}
|
31 |
+
|
32 |
+
def classify_image(image):
|
33 |
+
|
34 |
+
image = Image.fromarray(image.astype('uint8'), 'RGB')
|
35 |
+
|
36 |
+
image = image.resize((400, 400))
|
37 |
+
# Convert the PIL Image to a format compatible with the model
|
38 |
+
image = np.array(image)
|
39 |
+
image = np.expand_dims(image, axis=0) # Add batch dimension
|
40 |
+
image = tf.keras.applications.efficientnet.preprocess_input(image)
|
41 |
+
|
42 |
+
# Make prediction
|
43 |
+
preds = model.predict(image)
|
44 |
+
|
45 |
+
# Retrieve the highest probability class label index
|
46 |
+
predicted_class_idx = np.argmax(preds, axis=-1)[0]
|
47 |
+
|
48 |
+
# Convert the index to the model's class label
|
49 |
+
label = index_to_label.get(predicted_class_idx, "Unknown Label")
|
50 |
+
|
51 |
+
return label.capitalize()
|
52 |
+
|
53 |
+
# Create Gradio interface
|
54 |
+
iface = gr.Interface(fn=classify_image,
|
55 |
+
inputs=gr.Image(), # Accepts image of any size
|
56 |
+
outputs=gr.Label(),
|
57 |
+
title="Household Waste Classification with EfficientNetV2M",
|
58 |
+
description="Upload an image of household waste, and the model will classify it.")
|
59 |
+
|
60 |
+
# Launch the app
|
61 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Base ----------------------------------------
|
2 |
+
huggingface_hub>=0.23.4
|
3 |
+
numpy>=1.18.5
|
4 |
+
torch>=1.7.0
|
5 |
+
Pillow>=7.1.2
|
6 |
+
|
7 |
+
# Logging -------------------------------------
|
8 |
+
tensorflow==2.15
|