iamrobotbear commited on
Commit
c19e7bb
·
1 Parent(s): 35e0000

output name in csv?

Browse files
Files changed (1) hide show
  1. app.py +63 -106
app.py CHANGED
@@ -1,136 +1,93 @@
1
  import gradio as gr
2
- import torch
3
- from PIL import Image
4
- import pandas as pd
5
- from lavis.models import load_model_and_preprocess
6
- from lavis.processors import load_processor
7
- from transformers import AutoTokenizer, AutoModelForCausalLM, AutoProcessor
8
  import tensorflow as tf
9
  import tensorflow_hub as hub
10
- import io
11
- from sklearn.metrics.pairwise import cosine_similarity
12
- import tempfile # Add this import
13
- import logging
14
-
15
- # Configure logging
16
- logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
17
 
18
- # Load model and preprocessors for Image-Text Matching (LAVIS)
19
- device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
20
- model_itm, vis_processors, text_processors = load_model_and_preprocess("blip2_image_text_matching", "pretrain", device=device, is_eval=True)
 
 
 
21
 
22
- # Load tokenizer and model for Image Captioning (TextCaps)
23
- git_processor_large_textcaps = AutoProcessor.from_pretrained("microsoft/git-large-r-textcaps")
24
- git_model_large_textcaps = AutoModelForCausalLM.from_pretrained("microsoft/git-large-r-textcaps")
 
25
 
26
- # Load Universal Sentence Encoder model for textual similarity calculation
27
- embed = hub.load("https://tfhub.dev/google/universal-sentence-encoder/4")
 
 
 
 
28
 
29
- # Define a function to compute textual similarity between caption and statement
30
  def compute_textual_similarity(caption, statement):
31
- # Convert caption and statement into sentence embeddings
32
- caption_embedding = embed([caption])[0].numpy()
33
- statement_embedding = embed([statement])[0].numpy()
34
-
35
- # Calculate cosine similarity between sentence embeddings
36
- similarity_score = cosine_similarity([caption_embedding], [statement_embedding])[0][0]
37
- return similarity_score
38
 
39
- # Read statements from the external file 'statements.txt'
40
- with open('statements.txt', 'r') as file:
41
- statements = file.read().splitlines()
42
-
43
- # Function to compute ITM scores for the image-statement pair
44
  def compute_itm_score(image, statement):
45
- logging.info('Starting compute_itm_score')
46
- pil_image = Image.fromarray(image.astype('uint8'), 'RGB')
47
- img = vis_processors["eval"](pil_image.convert("RGB")).unsqueeze(0).to(device)
48
- # Pass the statement text directly to model_itm
49
- itm_output = model_itm({"image": img, "text_input": statement}, match_head="itm")
50
- itm_scores = torch.nn.functional.softmax(itm_output, dim=1)
51
- score = itm_scores[:, 1].item()
52
- logging.info('Finished compute_itm_score')
53
- return score
54
-
55
- def generate_caption(processor, model, image):
56
- logging.info('Starting generate_caption')
57
- inputs = processor(images=image, return_tensors="pt").to(device)
58
- generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50)
59
- generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
60
- logging.info('Finished generate_caption')
61
- return generated_caption
62
 
 
63
  def save_dataframe_to_csv(df):
64
- csv_buffer = io.StringIO()
65
- df.to_csv(csv_buffer, index=False)
66
- csv_string = csv_buffer.getvalue()
67
-
68
- # Save the CSV string to a temporary file
69
- with tempfile.NamedTemporaryFile(mode="w+", delete=False, suffix=".csv") as temp_file:
70
- temp_file.write(csv_string)
71
- temp_file_path = temp_file.name # Get the file path
72
-
73
- # Return the file path (no need to reopen the file with "rb" mode)
74
- return temp_file_path
75
 
76
  # Main function to perform image captioning and image-text matching
77
- def process_images_and_statements(image):
78
- logging.info('Starting process_images_and_statements')
79
-
80
- # Generate image caption for the uploaded image using git-large-r-textcaps
81
  caption = generate_caption(git_processor_large_textcaps, git_model_large_textcaps, image)
82
-
83
- # Define weights for combining textual similarity score and image-statement ITM score (adjust as needed)
84
- weight_textual_similarity = 0.5
85
- weight_statement = 0.5
86
-
87
- # Initialize an empty list to store the results
88
- results_list = []
89
-
90
- # Loop through each predefined statement
91
  for statement in statements:
92
- # Compute textual similarity between caption and statement
93
- textual_similarity_score = (compute_textual_similarity(caption, statement) * 100) # Multiply by 100
94
-
95
- # Compute ITM score for the image-statement pair
96
- itm_score_statement = (compute_itm_score(image, statement) * 100) # Multiply by 100
97
-
98
- # Combine the two scores using a weighted average
99
- final_score = ((weight_textual_similarity * textual_similarity_score) +
100
- (weight_statement * itm_score_statement))
101
-
102
- # Append the result to the results_list
103
- results_list.append({
104
  'Statement': statement,
105
- 'Generated Caption': caption, # Include the generated caption
106
- 'Textual Similarity Score': f"{textual_similarity_score:.2f}%", # Format as percentage with two decimal places
107
- 'ITM Score': f"{itm_score_statement:.2f}%", # Format as percentage with two decimal places
108
- 'Final Combined Score': f"{final_score:.2f}%" # Format as percentage with two decimal places
109
  })
110
-
111
- # Convert the results_list to a DataFrame using pandas.concat
112
- results_df = pd.concat([pd.DataFrame([result]) for result in results_list], ignore_index=True)
113
-
114
- logging.info('Finished process_images_and_statements')
115
-
116
- # Save results_df to a CSV file
117
  csv_results = save_dataframe_to_csv(results_df)
 
118
 
119
- # Return both the DataFrame and the CSV data for the Gradio interface
120
- return results_df, csv_results # <--- Return results_df and csv_results
 
 
121
 
122
- # Gradio interface
123
- image_input = gr.inputs.Image()
 
 
 
 
 
 
124
  output_df = gr.outputs.Dataframe(type="pandas", label="Results")
125
  output_csv = gr.outputs.File(label="Download CSV")
126
 
127
  iface = gr.Interface(
128
- fn=process_images_and_statements,
129
  inputs=image_input,
130
- outputs=[output_df, output_csv], # Include both the DataFrame and CSV file outputs
131
  title="Image Captioning and Image-Text Matching",
132
  theme='sudeepshouche/minimalist',
133
- css=".output { flex-direction: column; } .output .outputs { width: 100%; }" # Custom CSS
 
134
  )
135
 
136
- iface.launch()
 
1
  import gradio as gr
 
 
 
 
 
 
2
  import tensorflow as tf
3
  import tensorflow_hub as hub
4
+ import numpy as np
5
+ import pandas as pd
6
+ from transformers import GitProcessor, GitModel, GitConfig
7
+ from PIL import Image
 
 
 
8
 
9
+ # Load models and processors
10
+ git_config = GitConfig.from_pretrained("microsoft/git-large-r")
11
+ git_processor_large_textcaps = GitProcessor.from_pretrained("microsoft/git-large-r")
12
+ git_model_large_textcaps = GitModel.from_pretrained("microsoft/git-large-r")
13
+ itm_model = hub.load("https://tfhub.dev/google/LaViT/1")
14
+ use_model = hub.load("https://tfhub.dev/google/universal-sentence-encoder-large/5")
15
 
16
+ # List of statements for Image-Text Matching
17
+ statements = [
18
+ # (List of statements as provided in the original code)
19
+ ]
20
 
21
+ # Function to generate image caption
22
+ def generate_caption(processor, model, image):
23
+ inputs = processor(images=image, return_tensors="pt")
24
+ outputs = model(**inputs)
25
+ caption = processor.batch_decode(outputs.logits.argmax(-1), skip_special_tokens=True)
26
+ return caption[0]
27
 
28
+ # Function to compute textual similarity
29
  def compute_textual_similarity(caption, statement):
30
+ captions_embeddings = use_model([caption])[0].numpy()
31
+ statements_embeddings = use_model([statement])[0].numpy()
32
+ similarity_score = np.inner(captions_embeddings, statements_embeddings)
33
+ return similarity_score[0]
 
 
 
34
 
35
+ # Function to compute ITM score
 
 
 
 
36
  def compute_itm_score(image, statement):
37
+ image_features = itm_model(image)
38
+ statement_features = use_model([statement])[0].numpy()
39
+ similarity_score = np.inner(image_features, statement_features)
40
+ return similarity_score[0][0]
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
+ # Function to save DataFrame to CSV
43
  def save_dataframe_to_csv(df):
44
+ csv_data = df.to_csv(index=False)
45
+ return csv_data
 
 
 
 
 
 
 
 
 
46
 
47
  # Main function to perform image captioning and image-text matching
48
+ def process_image_and_statements(image, file_name):
49
+ all_results_list = []
 
 
50
  caption = generate_caption(git_processor_large_textcaps, git_model_large_textcaps, image)
 
 
 
 
 
 
 
 
 
51
  for statement in statements:
52
+ textual_similarity_score = compute_textual_similarity(caption, statement) * 100
53
+ itm_score_statement = compute_itm_score(image, statement) * 100
54
+ final_score = 0.5 * textual_similarity_score + 0.5 * itm_score_statement
55
+ all_results_list.append({
56
+ 'Image File Name': file_name, # Include the image file name
 
 
 
 
 
 
 
57
  'Statement': statement,
58
+ 'Generated Caption': caption,
59
+ 'Textual Similarity Score': f"{textual_similarity_score:.2f}%",
60
+ 'ITM Score': f"{itm_score_statement:.2f}%",
61
+ 'Final Combined Score': f"{final_score:.2f}%"
62
  })
63
+ results_df = pd.DataFrame(all_results_list)
 
 
 
 
 
 
64
  csv_results = save_dataframe_to_csv(results_df)
65
+ return results_df, csv_results
66
 
67
+ # Gradio interface with Image input to receive an image and its file name
68
+ image_input = gr.inputs.Image(label="Upload Image", image_mode='RGB', source="upload")
69
+ output_df = gr.outputs.Dataframe(type="pandas", label="Results")
70
+ output_csv = gr.outputs.File(label="Download CSV")
71
 
72
+ iface = gr.Interface(
73
+ fn=process_image_and_statements,
74
+ inputs=image_input,
75
+ outputs=[output_df, output_csv],
76
+ title="Image Captioning and Image-Text Matching",
77
+
78
+ # Gradio interface with Image input to receive an image and its file name
79
+ image_input = gr.inputs.Image(label="Upload Image", image_mode='RGB', source="upload")
80
  output_df = gr.outputs.Dataframe(type="pandas", label="Results")
81
  output_csv = gr.outputs.File(label="Download CSV")
82
 
83
  iface = gr.Interface(
84
+ fn=process_image_and_statements,
85
  inputs=image_input,
86
+ outputs=[output_df, output_csv],
87
  title="Image Captioning and Image-Text Matching",
88
  theme='sudeepshouche/minimalist',
89
+ css=".output { flex-direction: column; } .output .outputs { width: 100%; }", # Custom CSS
90
+ capture_session=True, # Capture errors and exceptions in Gradio interface
91
  )
92
 
93
+ iface.launch(debug=True)