Spaces:
Runtime error
Runtime error
kaushikbar
commited on
Commit
•
83f2778
1
Parent(s):
034a568
Loaded classifiers apriori
Browse files
app.py
CHANGED
@@ -19,6 +19,82 @@ hypothesis_templates = {'en': 'This example is {}.', # English
|
|
19 |
'tr': 'Bu örnek {}.', # Turkish
|
20 |
'no': 'Dette eksempelet er {}.'} # Norsk
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
def detect_lang(sequence, labels):
|
23 |
DetectorFactory.seed = 0
|
24 |
seq_lang = 'en'
|
@@ -57,14 +133,10 @@ def detect_lang(sequence, labels):
|
|
57 |
|
58 |
return seq_lang
|
59 |
|
60 |
-
|
61 |
def sequence_to_classify(sequence, labels):
|
62 |
-
|
63 |
|
64 |
-
|
65 |
-
classifier = pipeline("zero-shot-classification",
|
66 |
-
hypothesis_template=hypothesis_templates[lang],
|
67 |
-
model=models[lang])
|
68 |
response = classifier(sequence, label_clean, multi_label=True)
|
69 |
|
70 |
predicted_labels = response['labels']
|
@@ -77,75 +149,19 @@ def sequence_to_classify(sequence, labels):
|
|
77 |
|
78 |
return clean_output
|
79 |
|
80 |
-
example_text1 = "Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. Most \
|
81 |
-
people who fall sick with COVID-19 will experience mild to moderate symptoms and recover without special treatment. \
|
82 |
-
However, some will become seriously ill and require medical attention."
|
83 |
-
example_labels1 = "business,health related,politics,climate change"
|
84 |
-
|
85 |
-
example_text2 = "Elephants are"
|
86 |
-
example_labels2 = "big,small,strong,fast,carnivorous"
|
87 |
-
|
88 |
-
example_text3 = "Elephants"
|
89 |
-
example_labels3 = "are big,can be very small,generally not strong enough,are faster than you think"
|
90 |
-
|
91 |
-
example_text4 = "Dogs are man's best friend"
|
92 |
-
example_labels4 = "positive,negative,neutral"
|
93 |
-
|
94 |
-
example_text5 = "Amar sonar bangla ami tomay bhalobasi"
|
95 |
-
example_labels5 = "bhalo,kharap"
|
96 |
-
|
97 |
-
example_text6 = "Letzte Woche gab es einen Selbstmord in einer nahe gelegenen kolonie"
|
98 |
-
example_labels6 = "verbrechen,tragödie,stehlen"
|
99 |
-
|
100 |
-
example_text7 = "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo"
|
101 |
-
example_labels7 = "cultura,sociedad,economia,salud,deportes"
|
102 |
-
|
103 |
-
example_text8 = "Россия в среду заявила, что военные учения в аннексированном Москвой Крыму закончились \
|
104 |
-
и что солдаты возвращаются в свои гарнизоны, на следующий день после того, как она объявила о первом выводе \
|
105 |
-
войск от границ Украины."
|
106 |
-
example_labels8 = "новости,комедия"
|
107 |
-
|
108 |
-
example_text9 = "I quattro registi - Federico Fellini, Pier Paolo Pasolini, Bernardo Bertolucci e Vittorio De Sica - \
|
109 |
-
hanno utilizzato stili di ripresa diversi, ma hanno fortemente influenzato le giovani generazioni di registi."
|
110 |
-
example_labels9 = "cinema,politica,cibo"
|
111 |
-
|
112 |
-
example_text10 = "Ja, vi elsker dette landet,\
|
113 |
-
som det stiger frem,\
|
114 |
-
furet, værbitt over vannet,\
|
115 |
-
med de tusen hjem.\
|
116 |
-
Og som fedres kamp har hevet\
|
117 |
-
det av nød til seir"
|
118 |
-
example_labels10 = "helse,sport,religion,mat,patriotisme og nasjonalisme"
|
119 |
-
|
120 |
-
example_text11 = "Şampiyonlar Ligi’nde 5. hafta oynanan karşılaşmaların ardından sona erdi. Real Madrid, \
|
121 |
-
Inter ve Sporting oynadıkları mücadeleler sonrasında Son 16 turuna yükselmeyi başardı. \
|
122 |
-
Gecenin dev mücadelesinde ise Manchester City, PSG’yi yenerek liderliği garantiledi."
|
123 |
-
example_labels11 = "dünya,ekonomi,kültür,siyaset,spor,teknoloji"
|
124 |
-
|
125 |
iface = gr.Interface(
|
126 |
title="Multilingual Multi-label Zero-shot Classification",
|
127 |
description="Currently supported languages are English, German, Spanish, Italian, Russian, Turkish, Norsk.",
|
128 |
fn=sequence_to_classify,
|
129 |
-
inputs=[gr.inputs.Textbox(lines=
|
130 |
label="Please enter the text you would like to classify...",
|
131 |
placeholder="Text here..."),
|
132 |
-
gr.inputs.Textbox(lines=
|
133 |
label="Possible candidate labels (separated by comma)...",
|
134 |
placeholder="Labels here separated by comma...")],
|
135 |
outputs=gr.outputs.Label(num_top_classes=5),
|
136 |
capture_session=True,
|
137 |
#interpretation="default",
|
138 |
-
examples=
|
139 |
-
|
140 |
-
[example_text2, example_labels2],
|
141 |
-
[example_text3, example_labels3],
|
142 |
-
[example_text4, example_labels4],
|
143 |
-
[example_text5, example_labels5],
|
144 |
-
[example_text6, example_labels6],
|
145 |
-
[example_text7, example_labels7],
|
146 |
-
[example_text8, example_labels8],
|
147 |
-
[example_text9, example_labels9],
|
148 |
-
[example_text10, example_labels10],
|
149 |
-
[example_text11, example_labels11]]
|
150 |
-
)
|
151 |
iface.launch()
|
|
|
19 |
'tr': 'Bu örnek {}.', # Turkish
|
20 |
'no': 'Dette eksempelet er {}.'} # Norsk
|
21 |
|
22 |
+
classifiers = {'en': pipeline("zero-shot-classification", hypothesis_template=hypothesis_templates['en'],
|
23 |
+
model=models['en']),
|
24 |
+
'de': pipeline("zero-shot-classification", hypothesis_template=hypothesis_templates['de'],
|
25 |
+
model=models['de']),
|
26 |
+
'es': pipeline("zero-shot-classification", hypothesis_template=hypothesis_templates['es'],
|
27 |
+
model=models['es']),
|
28 |
+
'it': pipeline("zero-shot-classification", hypothesis_template=hypothesis_templates['it'],
|
29 |
+
model=models['it']),
|
30 |
+
'ru': pipeline("zero-shot-classification", hypothesis_template=hypothesis_templates['ru'],
|
31 |
+
model=models['ru']),
|
32 |
+
'tr': pipeline("zero-shot-classification", hypothesis_template=hypothesis_templates['tr'],
|
33 |
+
model=models['tr']),
|
34 |
+
'no': pipeline("zero-shot-classification", hypothesis_template=hypothesis_templates['no'],
|
35 |
+
model=models['no'])}
|
36 |
+
|
37 |
+
def prep_examples():
|
38 |
+
example_text1 = "Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. Most \
|
39 |
+
people who fall sick with COVID-19 will experience mild to moderate symptoms and recover without special treatment. \
|
40 |
+
However, some will become seriously ill and require medical attention."
|
41 |
+
example_labels1 = "business,health related,politics,climate change"
|
42 |
+
|
43 |
+
example_text2 = "Elephants are"
|
44 |
+
example_labels2 = "big,small,strong,fast,carnivorous"
|
45 |
+
|
46 |
+
example_text3 = "Elephants"
|
47 |
+
example_labels3 = "are big,can be very small,generally not strong enough,are faster than you think"
|
48 |
+
|
49 |
+
example_text4 = "Dogs are man's best friend"
|
50 |
+
example_labels4 = "positive,negative,neutral"
|
51 |
+
|
52 |
+
example_text5 = "Amar sonar bangla ami tomay bhalobasi"
|
53 |
+
example_labels5 = "bhalo,kharap"
|
54 |
+
|
55 |
+
example_text6 = "Letzte Woche gab es einen Selbstmord in einer nahe gelegenen kolonie"
|
56 |
+
example_labels6 = "verbrechen,tragödie,stehlen"
|
57 |
+
|
58 |
+
example_text7 = "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo"
|
59 |
+
example_labels7 = "cultura,sociedad,economia,salud,deportes"
|
60 |
+
|
61 |
+
example_text8 = "Россия в среду заявила, что военные учения в аннексированном Москвой Крыму закончились \
|
62 |
+
и что солдаты возвращаются в свои гарнизоны, на следующий день после того, как она объявила о первом выводе \
|
63 |
+
войск от границ Украины."
|
64 |
+
example_labels8 = "новости,комедия"
|
65 |
+
|
66 |
+
example_text9 = "I quattro registi - Federico Fellini, Pier Paolo Pasolini, Bernardo Bertolucci e Vittorio De Sica - \
|
67 |
+
hanno utilizzato stili di ripresa diversi, ma hanno fortemente influenzato le giovani generazioni di registi."
|
68 |
+
example_labels9 = "cinema,politica,cibo"
|
69 |
+
|
70 |
+
example_text10 = "Ja, vi elsker dette landet,\
|
71 |
+
som det stiger frem,\
|
72 |
+
furet, værbitt over vannet,\
|
73 |
+
med de tusen hjem.\
|
74 |
+
Og som fedres kamp har hevet\
|
75 |
+
det av nød til seir"
|
76 |
+
example_labels10 = "helse,sport,religion,mat,patriotisme og nasjonalisme"
|
77 |
+
|
78 |
+
example_text11 = "Şampiyonlar Ligi’nde 5. hafta oynanan karşılaşmaların ardından sona erdi. Real Madrid, \
|
79 |
+
Inter ve Sporting oynadıkları mücadeleler sonrasında Son 16 turuna yükselmeyi başardı. \
|
80 |
+
Gecenin dev mücadelesinde ise Manchester City, PSG’yi yenerek liderliği garantiledi."
|
81 |
+
example_labels11 = "dünya,ekonomi,kültür,siyaset,spor,teknoloji"
|
82 |
+
|
83 |
+
examples = [
|
84 |
+
[example_text1, example_labels1],
|
85 |
+
[example_text2, example_labels2],
|
86 |
+
[example_text3, example_labels3],
|
87 |
+
[example_text4, example_labels4],
|
88 |
+
[example_text5, example_labels5],
|
89 |
+
[example_text6, example_labels6],
|
90 |
+
[example_text7, example_labels7],
|
91 |
+
[example_text8, example_labels8],
|
92 |
+
[example_text9, example_labels9],
|
93 |
+
[example_text10, example_labels10],
|
94 |
+
[example_text11, example_labels11]]
|
95 |
+
|
96 |
+
return examples
|
97 |
+
|
98 |
def detect_lang(sequence, labels):
|
99 |
DetectorFactory.seed = 0
|
100 |
seq_lang = 'en'
|
|
|
133 |
|
134 |
return seq_lang
|
135 |
|
|
|
136 |
def sequence_to_classify(sequence, labels):
|
137 |
+
classifier = classifiers[detect_lang(sequence, labels)]
|
138 |
|
139 |
+
label_clean = str(labels).split(",")
|
|
|
|
|
|
|
140 |
response = classifier(sequence, label_clean, multi_label=True)
|
141 |
|
142 |
predicted_labels = response['labels']
|
|
|
149 |
|
150 |
return clean_output
|
151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
iface = gr.Interface(
|
153 |
title="Multilingual Multi-label Zero-shot Classification",
|
154 |
description="Currently supported languages are English, German, Spanish, Italian, Russian, Turkish, Norsk.",
|
155 |
fn=sequence_to_classify,
|
156 |
+
inputs=[gr.inputs.Textbox(lines=10,
|
157 |
label="Please enter the text you would like to classify...",
|
158 |
placeholder="Text here..."),
|
159 |
+
gr.inputs.Textbox(lines=2,
|
160 |
label="Possible candidate labels (separated by comma)...",
|
161 |
placeholder="Labels here separated by comma...")],
|
162 |
outputs=gr.outputs.Label(num_top_classes=5),
|
163 |
capture_session=True,
|
164 |
#interpretation="default",
|
165 |
+
examples=prep_examples())
|
166 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
iface.launch()
|