Spaces:
Runtime error
Runtime error
kaushikbar
commited on
Commit
·
83f2778
1
Parent(s):
034a568
Loaded classifiers apriori
Browse files
app.py
CHANGED
|
@@ -19,6 +19,82 @@ hypothesis_templates = {'en': 'This example is {}.', # English
|
|
| 19 |
'tr': 'Bu örnek {}.', # Turkish
|
| 20 |
'no': 'Dette eksempelet er {}.'} # Norsk
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
def detect_lang(sequence, labels):
|
| 23 |
DetectorFactory.seed = 0
|
| 24 |
seq_lang = 'en'
|
|
@@ -57,14 +133,10 @@ def detect_lang(sequence, labels):
|
|
| 57 |
|
| 58 |
return seq_lang
|
| 59 |
|
| 60 |
-
|
| 61 |
def sequence_to_classify(sequence, labels):
|
| 62 |
-
|
| 63 |
|
| 64 |
-
|
| 65 |
-
classifier = pipeline("zero-shot-classification",
|
| 66 |
-
hypothesis_template=hypothesis_templates[lang],
|
| 67 |
-
model=models[lang])
|
| 68 |
response = classifier(sequence, label_clean, multi_label=True)
|
| 69 |
|
| 70 |
predicted_labels = response['labels']
|
|
@@ -77,75 +149,19 @@ def sequence_to_classify(sequence, labels):
|
|
| 77 |
|
| 78 |
return clean_output
|
| 79 |
|
| 80 |
-
example_text1 = "Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. Most \
|
| 81 |
-
people who fall sick with COVID-19 will experience mild to moderate symptoms and recover without special treatment. \
|
| 82 |
-
However, some will become seriously ill and require medical attention."
|
| 83 |
-
example_labels1 = "business,health related,politics,climate change"
|
| 84 |
-
|
| 85 |
-
example_text2 = "Elephants are"
|
| 86 |
-
example_labels2 = "big,small,strong,fast,carnivorous"
|
| 87 |
-
|
| 88 |
-
example_text3 = "Elephants"
|
| 89 |
-
example_labels3 = "are big,can be very small,generally not strong enough,are faster than you think"
|
| 90 |
-
|
| 91 |
-
example_text4 = "Dogs are man's best friend"
|
| 92 |
-
example_labels4 = "positive,negative,neutral"
|
| 93 |
-
|
| 94 |
-
example_text5 = "Amar sonar bangla ami tomay bhalobasi"
|
| 95 |
-
example_labels5 = "bhalo,kharap"
|
| 96 |
-
|
| 97 |
-
example_text6 = "Letzte Woche gab es einen Selbstmord in einer nahe gelegenen kolonie"
|
| 98 |
-
example_labels6 = "verbrechen,tragödie,stehlen"
|
| 99 |
-
|
| 100 |
-
example_text7 = "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo"
|
| 101 |
-
example_labels7 = "cultura,sociedad,economia,salud,deportes"
|
| 102 |
-
|
| 103 |
-
example_text8 = "Россия в среду заявила, что военные учения в аннексированном Москвой Крыму закончились \
|
| 104 |
-
и что солдаты возвращаются в свои гарнизоны, на следующий день после того, как она объявила о первом выводе \
|
| 105 |
-
войск от границ Украины."
|
| 106 |
-
example_labels8 = "новости,комедия"
|
| 107 |
-
|
| 108 |
-
example_text9 = "I quattro registi - Federico Fellini, Pier Paolo Pasolini, Bernardo Bertolucci e Vittorio De Sica - \
|
| 109 |
-
hanno utilizzato stili di ripresa diversi, ma hanno fortemente influenzato le giovani generazioni di registi."
|
| 110 |
-
example_labels9 = "cinema,politica,cibo"
|
| 111 |
-
|
| 112 |
-
example_text10 = "Ja, vi elsker dette landet,\
|
| 113 |
-
som det stiger frem,\
|
| 114 |
-
furet, værbitt over vannet,\
|
| 115 |
-
med de tusen hjem.\
|
| 116 |
-
Og som fedres kamp har hevet\
|
| 117 |
-
det av nød til seir"
|
| 118 |
-
example_labels10 = "helse,sport,religion,mat,patriotisme og nasjonalisme"
|
| 119 |
-
|
| 120 |
-
example_text11 = "Şampiyonlar Ligi’nde 5. hafta oynanan karşılaşmaların ardından sona erdi. Real Madrid, \
|
| 121 |
-
Inter ve Sporting oynadıkları mücadeleler sonrasında Son 16 turuna yükselmeyi başardı. \
|
| 122 |
-
Gecenin dev mücadelesinde ise Manchester City, PSG’yi yenerek liderliği garantiledi."
|
| 123 |
-
example_labels11 = "dünya,ekonomi,kültür,siyaset,spor,teknoloji"
|
| 124 |
-
|
| 125 |
iface = gr.Interface(
|
| 126 |
title="Multilingual Multi-label Zero-shot Classification",
|
| 127 |
description="Currently supported languages are English, German, Spanish, Italian, Russian, Turkish, Norsk.",
|
| 128 |
fn=sequence_to_classify,
|
| 129 |
-
inputs=[gr.inputs.Textbox(lines=
|
| 130 |
label="Please enter the text you would like to classify...",
|
| 131 |
placeholder="Text here..."),
|
| 132 |
-
gr.inputs.Textbox(lines=
|
| 133 |
label="Possible candidate labels (separated by comma)...",
|
| 134 |
placeholder="Labels here separated by comma...")],
|
| 135 |
outputs=gr.outputs.Label(num_top_classes=5),
|
| 136 |
capture_session=True,
|
| 137 |
#interpretation="default",
|
| 138 |
-
examples=
|
| 139 |
-
|
| 140 |
-
[example_text2, example_labels2],
|
| 141 |
-
[example_text3, example_labels3],
|
| 142 |
-
[example_text4, example_labels4],
|
| 143 |
-
[example_text5, example_labels5],
|
| 144 |
-
[example_text6, example_labels6],
|
| 145 |
-
[example_text7, example_labels7],
|
| 146 |
-
[example_text8, example_labels8],
|
| 147 |
-
[example_text9, example_labels9],
|
| 148 |
-
[example_text10, example_labels10],
|
| 149 |
-
[example_text11, example_labels11]]
|
| 150 |
-
)
|
| 151 |
iface.launch()
|
|
|
|
| 19 |
'tr': 'Bu örnek {}.', # Turkish
|
| 20 |
'no': 'Dette eksempelet er {}.'} # Norsk
|
| 21 |
|
| 22 |
+
classifiers = {'en': pipeline("zero-shot-classification", hypothesis_template=hypothesis_templates['en'],
|
| 23 |
+
model=models['en']),
|
| 24 |
+
'de': pipeline("zero-shot-classification", hypothesis_template=hypothesis_templates['de'],
|
| 25 |
+
model=models['de']),
|
| 26 |
+
'es': pipeline("zero-shot-classification", hypothesis_template=hypothesis_templates['es'],
|
| 27 |
+
model=models['es']),
|
| 28 |
+
'it': pipeline("zero-shot-classification", hypothesis_template=hypothesis_templates['it'],
|
| 29 |
+
model=models['it']),
|
| 30 |
+
'ru': pipeline("zero-shot-classification", hypothesis_template=hypothesis_templates['ru'],
|
| 31 |
+
model=models['ru']),
|
| 32 |
+
'tr': pipeline("zero-shot-classification", hypothesis_template=hypothesis_templates['tr'],
|
| 33 |
+
model=models['tr']),
|
| 34 |
+
'no': pipeline("zero-shot-classification", hypothesis_template=hypothesis_templates['no'],
|
| 35 |
+
model=models['no'])}
|
| 36 |
+
|
| 37 |
+
def prep_examples():
|
| 38 |
+
example_text1 = "Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. Most \
|
| 39 |
+
people who fall sick with COVID-19 will experience mild to moderate symptoms and recover without special treatment. \
|
| 40 |
+
However, some will become seriously ill and require medical attention."
|
| 41 |
+
example_labels1 = "business,health related,politics,climate change"
|
| 42 |
+
|
| 43 |
+
example_text2 = "Elephants are"
|
| 44 |
+
example_labels2 = "big,small,strong,fast,carnivorous"
|
| 45 |
+
|
| 46 |
+
example_text3 = "Elephants"
|
| 47 |
+
example_labels3 = "are big,can be very small,generally not strong enough,are faster than you think"
|
| 48 |
+
|
| 49 |
+
example_text4 = "Dogs are man's best friend"
|
| 50 |
+
example_labels4 = "positive,negative,neutral"
|
| 51 |
+
|
| 52 |
+
example_text5 = "Amar sonar bangla ami tomay bhalobasi"
|
| 53 |
+
example_labels5 = "bhalo,kharap"
|
| 54 |
+
|
| 55 |
+
example_text6 = "Letzte Woche gab es einen Selbstmord in einer nahe gelegenen kolonie"
|
| 56 |
+
example_labels6 = "verbrechen,tragödie,stehlen"
|
| 57 |
+
|
| 58 |
+
example_text7 = "El autor se perfila, a los 50 años de su muerte, como uno de los grandes de su siglo"
|
| 59 |
+
example_labels7 = "cultura,sociedad,economia,salud,deportes"
|
| 60 |
+
|
| 61 |
+
example_text8 = "Россия в среду заявила, что военные учения в аннексированном Москвой Крыму закончились \
|
| 62 |
+
и что солдаты возвращаются в свои гарнизоны, на следующий день после того, как она объявила о первом выводе \
|
| 63 |
+
войск от границ Украины."
|
| 64 |
+
example_labels8 = "новости,комедия"
|
| 65 |
+
|
| 66 |
+
example_text9 = "I quattro registi - Federico Fellini, Pier Paolo Pasolini, Bernardo Bertolucci e Vittorio De Sica - \
|
| 67 |
+
hanno utilizzato stili di ripresa diversi, ma hanno fortemente influenzato le giovani generazioni di registi."
|
| 68 |
+
example_labels9 = "cinema,politica,cibo"
|
| 69 |
+
|
| 70 |
+
example_text10 = "Ja, vi elsker dette landet,\
|
| 71 |
+
som det stiger frem,\
|
| 72 |
+
furet, værbitt over vannet,\
|
| 73 |
+
med de tusen hjem.\
|
| 74 |
+
Og som fedres kamp har hevet\
|
| 75 |
+
det av nød til seir"
|
| 76 |
+
example_labels10 = "helse,sport,religion,mat,patriotisme og nasjonalisme"
|
| 77 |
+
|
| 78 |
+
example_text11 = "Şampiyonlar Ligi’nde 5. hafta oynanan karşılaşmaların ardından sona erdi. Real Madrid, \
|
| 79 |
+
Inter ve Sporting oynadıkları mücadeleler sonrasında Son 16 turuna yükselmeyi başardı. \
|
| 80 |
+
Gecenin dev mücadelesinde ise Manchester City, PSG’yi yenerek liderliği garantiledi."
|
| 81 |
+
example_labels11 = "dünya,ekonomi,kültür,siyaset,spor,teknoloji"
|
| 82 |
+
|
| 83 |
+
examples = [
|
| 84 |
+
[example_text1, example_labels1],
|
| 85 |
+
[example_text2, example_labels2],
|
| 86 |
+
[example_text3, example_labels3],
|
| 87 |
+
[example_text4, example_labels4],
|
| 88 |
+
[example_text5, example_labels5],
|
| 89 |
+
[example_text6, example_labels6],
|
| 90 |
+
[example_text7, example_labels7],
|
| 91 |
+
[example_text8, example_labels8],
|
| 92 |
+
[example_text9, example_labels9],
|
| 93 |
+
[example_text10, example_labels10],
|
| 94 |
+
[example_text11, example_labels11]]
|
| 95 |
+
|
| 96 |
+
return examples
|
| 97 |
+
|
| 98 |
def detect_lang(sequence, labels):
|
| 99 |
DetectorFactory.seed = 0
|
| 100 |
seq_lang = 'en'
|
|
|
|
| 133 |
|
| 134 |
return seq_lang
|
| 135 |
|
|
|
|
| 136 |
def sequence_to_classify(sequence, labels):
|
| 137 |
+
classifier = classifiers[detect_lang(sequence, labels)]
|
| 138 |
|
| 139 |
+
label_clean = str(labels).split(",")
|
|
|
|
|
|
|
|
|
|
| 140 |
response = classifier(sequence, label_clean, multi_label=True)
|
| 141 |
|
| 142 |
predicted_labels = response['labels']
|
|
|
|
| 149 |
|
| 150 |
return clean_output
|
| 151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
iface = gr.Interface(
|
| 153 |
title="Multilingual Multi-label Zero-shot Classification",
|
| 154 |
description="Currently supported languages are English, German, Spanish, Italian, Russian, Turkish, Norsk.",
|
| 155 |
fn=sequence_to_classify,
|
| 156 |
+
inputs=[gr.inputs.Textbox(lines=10,
|
| 157 |
label="Please enter the text you would like to classify...",
|
| 158 |
placeholder="Text here..."),
|
| 159 |
+
gr.inputs.Textbox(lines=2,
|
| 160 |
label="Possible candidate labels (separated by comma)...",
|
| 161 |
placeholder="Labels here separated by comma...")],
|
| 162 |
outputs=gr.outputs.Label(num_top_classes=5),
|
| 163 |
capture_session=True,
|
| 164 |
#interpretation="default",
|
| 165 |
+
examples=prep_examples())
|
| 166 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
iface.launch()
|