Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +316 -70
- rag_pipeline.py +695 -258
- requirements.txt +4 -1
app.py
CHANGED
|
@@ -1,20 +1,145 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
-
from rag_pipeline import
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
# Check if running on Hugging Face Spaces
|
| 6 |
IS_HF_SPACES = os.getenv("SPACE_ID") is not None
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
def chat_with_rag(message, history):
|
|
|
|
|
|
|
|
|
|
| 10 |
if not message.strip():
|
| 11 |
return history, ""
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
try:
|
|
|
|
|
|
|
| 14 |
response = rag_chain.invoke(message)
|
| 15 |
|
| 16 |
# Check if response is too long and truncate if necessary
|
| 17 |
-
max_display_length = 8000
|
| 18 |
if len(response) > max_display_length:
|
| 19 |
truncated_response = (
|
| 20 |
response[:max_display_length]
|
|
@@ -39,6 +164,36 @@ def clear_chat():
|
|
| 39 |
return [], ""
|
| 40 |
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
with gr.Blocks(
|
| 43 |
theme=gr.themes.Soft(),
|
| 44 |
css="""
|
|
@@ -88,92 +243,183 @@ with gr.Blocks(
|
|
| 88 |
.clear-button:hover {
|
| 89 |
background-color: #c82333 !important;
|
| 90 |
}
|
| 91 |
-
.
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
}
|
| 96 |
-
.
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
}
|
| 99 |
""",
|
| 100 |
) as demo:
|
| 101 |
-
gr.Markdown("# π€
|
| 102 |
-
gr.Markdown(
|
| 103 |
-
"Ask questions about React documentation and get comprehensive answers."
|
| 104 |
-
)
|
| 105 |
|
| 106 |
-
#
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
)
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
)
|
| 128 |
|
| 129 |
-
#
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
)
|
| 134 |
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
"""
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
)
|
| 149 |
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
outputs=[chatbot, textbox],
|
| 167 |
-
api_name="send_enter",
|
| 168 |
-
)
|
| 169 |
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
if __name__ == "__main__":
|
| 176 |
demo.launch(
|
| 177 |
-
debug=False,
|
| 178 |
-
show_error=True,
|
| 179 |
)
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
+
from rag_pipeline import create_rag_chain
|
| 4 |
+
import time
|
| 5 |
+
import logging
|
| 6 |
+
from appwrite_service import appwrite_service
|
| 7 |
|
| 8 |
# Check if running on Hugging Face Spaces
|
| 9 |
IS_HF_SPACES = os.getenv("SPACE_ID") is not None
|
| 10 |
|
| 11 |
+
# Configure logging
|
| 12 |
+
logging.basicConfig(level=logging.INFO)
|
| 13 |
+
logger = logging.getLogger(__name__)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
# Predefined documentation sets
|
| 17 |
+
PREDEFINED_DOCS = {
|
| 18 |
+
"React": {
|
| 19 |
+
"name": "React Documentation",
|
| 20 |
+
"url": "https://react.dev/learn",
|
| 21 |
+
"description": "Official React documentation including hooks, components, and best practices",
|
| 22 |
+
"category": "Frontend Framework",
|
| 23 |
+
},
|
| 24 |
+
"Go": {
|
| 25 |
+
"name": "Go Documentation",
|
| 26 |
+
"url": "https://go.dev/doc/",
|
| 27 |
+
"description": "Official Go documentation including language features, standard library, and tutorials",
|
| 28 |
+
"category": "Programming Language",
|
| 29 |
+
},
|
| 30 |
+
"Python": {
|
| 31 |
+
"name": "Python Documentation",
|
| 32 |
+
"url": "https://docs.python.org/3/",
|
| 33 |
+
"description": "Official Python documentation covering language features, standard library, and tutorials",
|
| 34 |
+
"category": "Programming Language",
|
| 35 |
+
},
|
| 36 |
+
"Node.js": {
|
| 37 |
+
"name": "Node.js Documentation",
|
| 38 |
+
"url": "https://nodejs.org/en/docs/",
|
| 39 |
+
"description": "Node.js runtime documentation including APIs, modules, and development guides",
|
| 40 |
+
"category": "Runtime Environment",
|
| 41 |
+
},
|
| 42 |
+
"Vue.js": {
|
| 43 |
+
"name": "Vue.js Documentation",
|
| 44 |
+
"url": "https://vuejs.org/guide/",
|
| 45 |
+
"description": "Vue.js framework documentation with composition API, components, and routing",
|
| 46 |
+
"category": "Frontend Framework",
|
| 47 |
+
},
|
| 48 |
+
"Django": {
|
| 49 |
+
"name": "Django Documentation",
|
| 50 |
+
"url": "https://docs.djangoproject.com/en/stable/",
|
| 51 |
+
"description": "Django web framework documentation including models, views, and deployment",
|
| 52 |
+
"category": "Backend Framework",
|
| 53 |
+
},
|
| 54 |
+
"FastAPI": {
|
| 55 |
+
"name": "FastAPI Documentation",
|
| 56 |
+
"url": "https://fastapi.tiangolo.com/",
|
| 57 |
+
"description": "FastAPI framework documentation with automatic API documentation and validation",
|
| 58 |
+
"category": "Backend Framework",
|
| 59 |
+
},
|
| 60 |
+
"Docker": {
|
| 61 |
+
"name": "Docker Documentation",
|
| 62 |
+
"url": "https://docs.docker.com/",
|
| 63 |
+
"description": "Docker containerization platform documentation including images, containers, and orchestration",
|
| 64 |
+
"category": "DevOps",
|
| 65 |
+
},
|
| 66 |
+
"Kubernetes": {
|
| 67 |
+
"name": "Kubernetes Documentation",
|
| 68 |
+
"url": "https://kubernetes.io/docs/",
|
| 69 |
+
"description": "Kubernetes orchestration platform documentation including pods, services, and deployment",
|
| 70 |
+
"category": "DevOps",
|
| 71 |
+
},
|
| 72 |
+
"MongoDB": {
|
| 73 |
+
"name": "MongoDB Documentation",
|
| 74 |
+
"url": "https://docs.mongodb.com/",
|
| 75 |
+
"description": "MongoDB NoSQL database documentation including CRUD operations and aggregation",
|
| 76 |
+
"category": "Database",
|
| 77 |
+
},
|
| 78 |
+
"PostgreSQL": {
|
| 79 |
+
"name": "PostgreSQL Documentation",
|
| 80 |
+
"url": "https://www.postgresql.org/docs/",
|
| 81 |
+
"description": "PostgreSQL relational database documentation including SQL features and administration",
|
| 82 |
+
"category": "Database",
|
| 83 |
+
},
|
| 84 |
+
}
|
| 85 |
+
|
| 86 |
+
# Global variable to track selected documentation
|
| 87 |
+
selected_docs = {"key": None, "name": None, "url": None}
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def select_documentation(doc_key):
|
| 91 |
+
"""Select a predefined documentation set"""
|
| 92 |
+
global selected_docs
|
| 93 |
+
|
| 94 |
+
if doc_key not in PREDEFINED_DOCS:
|
| 95 |
+
return "β Invalid documentation selection"
|
| 96 |
+
|
| 97 |
+
doc_info = PREDEFINED_DOCS[doc_key]
|
| 98 |
+
selected_docs["key"] = doc_key
|
| 99 |
+
selected_docs["name"] = doc_info["name"]
|
| 100 |
+
selected_docs["url"] = doc_info["url"]
|
| 101 |
+
|
| 102 |
+
# Check detailed status
|
| 103 |
+
status = get_detailed_status(doc_info["url"])
|
| 104 |
+
|
| 105 |
+
if "β
Available" in status:
|
| 106 |
+
return f"β
{doc_info['name']} is ready! You can now ask questions about it."
|
| 107 |
+
elif "β οΈ" in status:
|
| 108 |
+
return f"β οΈ {doc_info['name']} selected but not fully available. Contact administrator."
|
| 109 |
+
else:
|
| 110 |
+
return f"β {doc_info['name']} is not available. Contact administrator."
|
| 111 |
+
|
| 112 |
|
| 113 |
def chat_with_rag(message, history):
|
| 114 |
+
"""Chat with RAG system"""
|
| 115 |
+
global selected_docs
|
| 116 |
+
|
| 117 |
if not message.strip():
|
| 118 |
return history, ""
|
| 119 |
|
| 120 |
+
# Check if documentation is selected and processed
|
| 121 |
+
if not selected_docs["key"]:
|
| 122 |
+
error_msg = "β Please select a documentation set first. Go to the 'Select Documentation' tab."
|
| 123 |
+
history.append({"role": "user", "content": message})
|
| 124 |
+
history.append({"role": "assistant", "content": error_msg})
|
| 125 |
+
return history, ""
|
| 126 |
+
|
| 127 |
+
# Check if documentation is fully processed and available for chat
|
| 128 |
+
is_fully_processed = appwrite_service.is_fully_processed(selected_docs["url"])
|
| 129 |
+
|
| 130 |
+
if not is_fully_processed:
|
| 131 |
+
error_msg = f"β {selected_docs['name']} is not available for chat. Please contact the administrator to make this documentation available."
|
| 132 |
+
history.append({"role": "user", "content": message})
|
| 133 |
+
history.append({"role": "assistant", "content": error_msg})
|
| 134 |
+
return history, ""
|
| 135 |
+
|
| 136 |
try:
|
| 137 |
+
# Create RAG chain for the selected documentation
|
| 138 |
+
rag_chain = create_rag_chain(selected_docs["url"])
|
| 139 |
response = rag_chain.invoke(message)
|
| 140 |
|
| 141 |
# Check if response is too long and truncate if necessary
|
| 142 |
+
max_display_length = 8000
|
| 143 |
if len(response) > max_display_length:
|
| 144 |
truncated_response = (
|
| 145 |
response[:max_display_length]
|
|
|
|
| 164 |
return [], ""
|
| 165 |
|
| 166 |
|
| 167 |
+
def get_detailed_status(url):
|
| 168 |
+
"""Get detailed status of documentation availability"""
|
| 169 |
+
if not url:
|
| 170 |
+
return "β No URL provided"
|
| 171 |
+
|
| 172 |
+
try:
|
| 173 |
+
# Check if fully processed (has completion status)
|
| 174 |
+
is_fully_processed = appwrite_service.is_fully_processed(url)
|
| 175 |
+
|
| 176 |
+
if is_fully_processed:
|
| 177 |
+
return "β
Available for Chat"
|
| 178 |
+
else:
|
| 179 |
+
return "β Not Available - Contact Admin"
|
| 180 |
+
except Exception as e:
|
| 181 |
+
return f"β Error checking status: {str(e)}"
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
def get_current_selection():
|
| 185 |
+
"""Get current documentation selection info with detailed status"""
|
| 186 |
+
global selected_docs
|
| 187 |
+
|
| 188 |
+
if selected_docs["key"]:
|
| 189 |
+
doc_info = PREDEFINED_DOCS[selected_docs["key"]]
|
| 190 |
+
status = get_detailed_status(selected_docs["url"])
|
| 191 |
+
return f"π {doc_info['name']}\nπ {doc_info['description']}\nπ {doc_info['url']}\n\nStatus: {status}"
|
| 192 |
+
else:
|
| 193 |
+
return "β No documentation selected. Please select a documentation set from the list above."
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
# Create the Gradio interface
|
| 197 |
with gr.Blocks(
|
| 198 |
theme=gr.themes.Soft(),
|
| 199 |
css="""
|
|
|
|
| 243 |
.clear-button:hover {
|
| 244 |
background-color: #c82333 !important;
|
| 245 |
}
|
| 246 |
+
.select-button {
|
| 247 |
+
background-color: #17a2b8 !important;
|
| 248 |
+
color: white !important;
|
| 249 |
+
border: none !important;
|
| 250 |
+
border-radius: 8px !important;
|
| 251 |
+
padding: 8px 16px !important;
|
| 252 |
+
font-weight: bold !important;
|
| 253 |
+
transition: background-color 0.3s !important;
|
| 254 |
+
}
|
| 255 |
+
.select-button:hover {
|
| 256 |
+
background-color: #138496 !important;
|
| 257 |
}
|
| 258 |
+
.doc-selector {
|
| 259 |
+
background-color: #f8f9fa !important;
|
| 260 |
+
border: 1px solid #ddd !important;
|
| 261 |
+
border-radius: 8px !important;
|
| 262 |
+
padding: 15px !important;
|
| 263 |
+
margin-bottom: 20px !important;
|
| 264 |
+
}
|
| 265 |
+
.doc-selector:hover {
|
| 266 |
+
border-color: #007acc !important;
|
| 267 |
+
background-color: #e6f3ff !important;
|
| 268 |
}
|
| 269 |
""",
|
| 270 |
) as demo:
|
| 271 |
+
gr.Markdown("# π€ Documentation Assistant")
|
| 272 |
+
gr.Markdown("Select documentation and start chatting!")
|
|
|
|
|
|
|
| 273 |
|
| 274 |
+
# Documentation Selection Section (Small section at top)
|
| 275 |
+
with gr.Group(elem_classes=["doc-selector"]):
|
| 276 |
+
gr.Markdown("### π Select Documentation")
|
| 277 |
+
|
| 278 |
+
# Get available documentation from database
|
| 279 |
+
def get_available_docs():
|
| 280 |
+
"""Get only documentation that is available in the database"""
|
| 281 |
+
available_docs = {}
|
| 282 |
+
available_options = []
|
| 283 |
+
|
| 284 |
+
for key, doc_info in PREDEFINED_DOCS.items():
|
| 285 |
+
if appwrite_service.is_fully_processed(doc_info["url"]):
|
| 286 |
+
available_docs[key] = doc_info
|
| 287 |
+
available_options.append(f"{doc_info['name']} - {doc_info['url']}")
|
| 288 |
+
|
| 289 |
+
return available_docs, available_options
|
| 290 |
|
| 291 |
+
# Get available documentation
|
| 292 |
+
available_docs, doc_options = get_available_docs()
|
| 293 |
+
doc_keys = list(available_docs.keys())
|
| 294 |
+
|
| 295 |
+
if not available_docs:
|
| 296 |
+
gr.Markdown("β **No documentation is currently available.**")
|
| 297 |
+
gr.Markdown("Please contact the administrator to process documentation.")
|
| 298 |
+
else:
|
| 299 |
+
doc_dropdown = gr.Dropdown(
|
| 300 |
+
choices=doc_options,
|
| 301 |
+
label="Choose Documentation",
|
| 302 |
+
value=None,
|
| 303 |
+
interactive=True,
|
| 304 |
)
|
| 305 |
+
|
| 306 |
+
# Current selection display
|
| 307 |
+
current_selection = gr.Textbox(
|
| 308 |
+
label="Selected Documentation",
|
| 309 |
+
interactive=False,
|
| 310 |
+
value="No documentation selected",
|
| 311 |
+
lines=2,
|
| 312 |
)
|
| 313 |
|
| 314 |
+
# Chat Interface (Main section)
|
| 315 |
+
if available_docs:
|
| 316 |
+
gr.Markdown("### π¬ Chat with Documentation")
|
| 317 |
+
|
| 318 |
+
# Chat history
|
| 319 |
+
chatbot = gr.Chatbot(
|
| 320 |
+
label="Chat History",
|
| 321 |
+
height=500,
|
| 322 |
+
show_label=True,
|
| 323 |
+
type="messages",
|
| 324 |
)
|
| 325 |
|
| 326 |
+
# Input area with send button
|
| 327 |
+
with gr.Row():
|
| 328 |
+
with gr.Column(scale=4):
|
| 329 |
+
textbox = gr.Textbox(
|
| 330 |
+
placeholder="Ask a question about the documentation... (Press Enter or click Send)",
|
| 331 |
+
lines=2,
|
| 332 |
+
max_lines=5,
|
| 333 |
+
label="Your Question",
|
| 334 |
+
show_label=True,
|
| 335 |
+
)
|
| 336 |
+
with gr.Column(scale=1):
|
| 337 |
+
send_button = gr.Button(
|
| 338 |
+
"π Send",
|
| 339 |
+
variant="primary",
|
| 340 |
+
size="lg",
|
| 341 |
+
elem_classes=["send-button"],
|
| 342 |
+
)
|
| 343 |
+
|
| 344 |
+
# Control buttons
|
| 345 |
+
with gr.Row():
|
| 346 |
+
clear_button = gr.Button(
|
| 347 |
+
"ποΈ Clear Chat", variant="secondary", elem_classes=["clear-button"]
|
| 348 |
+
)
|
| 349 |
+
|
| 350 |
+
# Example questions
|
| 351 |
+
with gr.Accordion("Example Questions", open=False):
|
| 352 |
+
gr.Markdown(
|
| 353 |
+
"""
|
| 354 |
+
Try these example questions after selecting documentation:
|
| 355 |
+
- **What is the main concept?**
|
| 356 |
+
- **How do I get started?**
|
| 357 |
+
- **What are the key features?**
|
| 358 |
+
- **Show me an example**
|
| 359 |
+
- **What are the best practices?**
|
| 360 |
"""
|
| 361 |
+
)
|
| 362 |
+
|
| 363 |
+
# Event handlers
|
| 364 |
+
def select_doc_from_dropdown(choice):
|
| 365 |
+
"""Handle documentation selection from dropdown"""
|
| 366 |
+
if not choice:
|
| 367 |
+
return "No documentation selected"
|
| 368 |
+
|
| 369 |
+
# Find the key for the selected option
|
| 370 |
+
selected_index = doc_options.index(choice)
|
| 371 |
+
selected_key = doc_keys[selected_index]
|
| 372 |
+
|
| 373 |
+
# Call the existing select_documentation function
|
| 374 |
+
return select_documentation(selected_key)
|
| 375 |
+
|
| 376 |
+
def send_message(message, history):
|
| 377 |
+
return chat_with_rag(message, history)
|
| 378 |
+
|
| 379 |
+
def update_selection():
|
| 380 |
+
return get_current_selection()
|
| 381 |
+
|
| 382 |
+
# Connect the dropdown
|
| 383 |
+
doc_dropdown.change(
|
| 384 |
+
fn=select_doc_from_dropdown,
|
| 385 |
+
inputs=[doc_dropdown],
|
| 386 |
+
outputs=[current_selection],
|
| 387 |
)
|
| 388 |
|
| 389 |
+
# Connect the send button
|
| 390 |
+
send_button.click(
|
| 391 |
+
fn=send_message,
|
| 392 |
+
inputs=[textbox, chatbot],
|
| 393 |
+
outputs=[chatbot, textbox],
|
| 394 |
+
api_name="send",
|
| 395 |
+
)
|
| 396 |
|
| 397 |
+
# Connect Enter key in textbox
|
| 398 |
+
textbox.submit(
|
| 399 |
+
fn=send_message,
|
| 400 |
+
inputs=[textbox, chatbot],
|
| 401 |
+
outputs=[chatbot, textbox],
|
| 402 |
+
api_name="send_enter",
|
| 403 |
+
)
|
| 404 |
|
| 405 |
+
# Connect clear button
|
| 406 |
+
clear_button.click(
|
| 407 |
+
fn=clear_chat, inputs=[], outputs=[chatbot, textbox], api_name="clear"
|
| 408 |
+
)
|
|
|
|
|
|
|
|
|
|
| 409 |
|
| 410 |
+
# Update selection info on load
|
| 411 |
+
demo.load(
|
| 412 |
+
fn=update_selection,
|
| 413 |
+
inputs=[],
|
| 414 |
+
outputs=[current_selection],
|
| 415 |
+
)
|
| 416 |
+
else:
|
| 417 |
+
gr.Markdown("### π¬ Chat Interface")
|
| 418 |
+
gr.Markdown("**No documentation is available for chat.**")
|
| 419 |
+
gr.Markdown("Please contact the administrator to process documentation first.")
|
| 420 |
|
| 421 |
if __name__ == "__main__":
|
| 422 |
demo.launch(
|
| 423 |
+
debug=False,
|
| 424 |
+
show_error=True,
|
| 425 |
)
|
rag_pipeline.py
CHANGED
|
@@ -1,258 +1,695 @@
|
|
| 1 |
-
import os
|
| 2 |
-
from dotenv import load_dotenv
|
| 3 |
-
from langchain_pinecone import Pinecone as LangchainPinecone
|
| 4 |
-
from langchain_huggingface import HuggingFaceEmbeddings
|
| 5 |
-
from langchain_core.prompts import PromptTemplate
|
| 6 |
-
from langchain_core.runnables import RunnableLambda
|
| 7 |
-
from langchain_openai import ChatOpenAI
|
| 8 |
-
import
|
| 9 |
-
|
| 10 |
-
from
|
| 11 |
-
import
|
| 12 |
-
import
|
| 13 |
-
import
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
)
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
f"
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
#
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from dotenv import load_dotenv
|
| 3 |
+
from langchain_pinecone import Pinecone as LangchainPinecone
|
| 4 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
| 5 |
+
from langchain_core.prompts import PromptTemplate
|
| 6 |
+
from langchain_core.runnables import RunnableLambda
|
| 7 |
+
from langchain_openai import ChatOpenAI
|
| 8 |
+
from langchain_core.documents import Document
|
| 9 |
+
import json
|
| 10 |
+
from rank_bm25 import BM25Okapi
|
| 11 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 12 |
+
import torch
|
| 13 |
+
import logging
|
| 14 |
+
import re
|
| 15 |
+
from appwrite_service import appwrite_service
|
| 16 |
+
|
| 17 |
+
load_dotenv()
|
| 18 |
+
|
| 19 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s %(message)s")
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def detect_device():
|
| 23 |
+
"""Detect the best available device for computation"""
|
| 24 |
+
if torch.cuda.is_available():
|
| 25 |
+
device = "cuda"
|
| 26 |
+
logging.info(f"π GPU detected: {torch.cuda.get_device_name(0)}")
|
| 27 |
+
logging.info(
|
| 28 |
+
f"πΎ GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f} GB"
|
| 29 |
+
)
|
| 30 |
+
else:
|
| 31 |
+
device = "cpu"
|
| 32 |
+
logging.info("π» Using CPU for computation")
|
| 33 |
+
return device
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# Initialize device
|
| 37 |
+
device = detect_device()
|
| 38 |
+
|
| 39 |
+
# Initialize Pinecone vectorstore with GPU support
|
| 40 |
+
logging.info(f"π§ Initializing embeddings model on {device.upper()}")
|
| 41 |
+
embedder = HuggingFaceEmbeddings(
|
| 42 |
+
model_name="intfloat/e5-large-v2",
|
| 43 |
+
model_kwargs={"device": device},
|
| 44 |
+
encode_kwargs={"normalize_embeddings": True},
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
index_name = os.getenv("PINECONE_INDEX")
|
| 48 |
+
vectorstore = LangchainPinecone.from_existing_index(
|
| 49 |
+
index_name=index_name,
|
| 50 |
+
embedding=embedder,
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
# Retriever
|
| 54 |
+
retriever = vectorstore.as_retriever(search_kwargs={"k": 5})
|
| 55 |
+
|
| 56 |
+
# LLM setup
|
| 57 |
+
llm = ChatOpenAI(
|
| 58 |
+
model=os.getenv("OPENROUTER_MODEL"),
|
| 59 |
+
api_key=os.getenv("OPENROUTER_API_KEY"),
|
| 60 |
+
base_url="https://openrouter.ai/api/v1",
|
| 61 |
+
max_tokens=2000,
|
| 62 |
+
temperature=0.7,
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
# Relevance check prompt template
|
| 66 |
+
relevance_template = """You are a helpful assistant that determines if a question is related to the available documentation.
|
| 67 |
+
|
| 68 |
+
Available Documentation Context:
|
| 69 |
+
{context}
|
| 70 |
+
|
| 71 |
+
Question: {question}
|
| 72 |
+
|
| 73 |
+
Instructions:
|
| 74 |
+
- Answer "YES" if the question is related to ANY topic, concept, feature, or technology mentioned in the documentation context above
|
| 75 |
+
- Answer "YES" if the question asks about general concepts that would be covered in this type of documentation
|
| 76 |
+
- Answer "NO" only if the question is clearly about a completely different technology, domain, or unrelated topic
|
| 77 |
+
- Be generous in your interpretation - if there's any reasonable chance the documentation could help answer the question, answer "YES"
|
| 78 |
+
|
| 79 |
+
Examples:
|
| 80 |
+
- For React documentation: Questions about hooks, components, JSX, state, props, lifecycle, etc. should be "YES"
|
| 81 |
+
- For Python documentation: Questions about syntax, libraries, functions, data types, etc. should be "YES"
|
| 82 |
+
- For any documentation: Questions about basic concepts of that technology should be "YES"
|
| 83 |
+
|
| 84 |
+
Answer with ONLY "YES" or "NO":"""
|
| 85 |
+
|
| 86 |
+
relevance_prompt = PromptTemplate(
|
| 87 |
+
input_variables=["context", "question"],
|
| 88 |
+
template=relevance_template,
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
# Question decomposition prompt template
|
| 92 |
+
decomposition_template = """Break down the following question into exactly 4 sub-questions that would help provide a comprehensive answer.
|
| 93 |
+
Each sub-question should focus on a different aspect of the main question.
|
| 94 |
+
|
| 95 |
+
Original Question: {question}
|
| 96 |
+
|
| 97 |
+
Please provide exactly 4 sub-questions, one per line, starting with numbers 1-4:
|
| 98 |
+
|
| 99 |
+
1. [First sub-question]
|
| 100 |
+
2. [Second sub-question]
|
| 101 |
+
3. [Third sub-question]
|
| 102 |
+
4. [Fourth sub-question]
|
| 103 |
+
|
| 104 |
+
Make sure each sub-question is specific and focused on a different aspect of the original question."""
|
| 105 |
+
|
| 106 |
+
decomposition_prompt = PromptTemplate(
|
| 107 |
+
input_variables=["question"],
|
| 108 |
+
template=decomposition_template,
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
# Answer synthesis prompt template
|
| 112 |
+
synthesis_template = """You are a helpful assistant. Based on the answers to the sub-questions below, provide a comprehensive but concise answer to the original question.
|
| 113 |
+
|
| 114 |
+
Original Question: {original_question}
|
| 115 |
+
|
| 116 |
+
Sub-questions and their answers:
|
| 117 |
+
{sub_answers}
|
| 118 |
+
|
| 119 |
+
Please synthesize these answers into a clear, well-structured response that directly addresses the original question.
|
| 120 |
+
Keep the response focused and avoid unnecessary repetition. If any sub-question couldn't be answered with the available context, mention that briefly.
|
| 121 |
+
Include relevant code examples where applicable, but keep them concise."""
|
| 122 |
+
|
| 123 |
+
synthesis_prompt = PromptTemplate(
|
| 124 |
+
input_variables=["original_question", "sub_answers"],
|
| 125 |
+
template=synthesis_template,
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
# Individual answer prompt template
|
| 129 |
+
template = """You are a helpful assistant. Answer the question using ONLY the context below. Also add a code example if applicable.
|
| 130 |
+
If the answer is not in the context, say "I don't know."
|
| 131 |
+
|
| 132 |
+
Context:
|
| 133 |
+
{context}
|
| 134 |
+
|
| 135 |
+
Question:
|
| 136 |
+
{question}
|
| 137 |
+
|
| 138 |
+
Helpful Answer:"""
|
| 139 |
+
|
| 140 |
+
prompt = PromptTemplate(
|
| 141 |
+
input_variables=["context", "question"],
|
| 142 |
+
template=template,
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
# Load docs for BM25 from Appwrite instead of local JSON
|
| 147 |
+
def load_docs_from_appwrite(selected_url=None):
|
| 148 |
+
"""Load document chunks from Appwrite database for specific documentation"""
|
| 149 |
+
try:
|
| 150 |
+
logging.info(f"Loading document chunks from Appwrite for URL: {selected_url}")
|
| 151 |
+
docs_json = appwrite_service.get_all_chunks(selected_url)
|
| 152 |
+
|
| 153 |
+
if not docs_json:
|
| 154 |
+
logging.warning(
|
| 155 |
+
f"No chunks found in Appwrite database for URL: {selected_url}. This is normal if no documentation has been processed yet."
|
| 156 |
+
)
|
| 157 |
+
# Return empty list instead of raising error
|
| 158 |
+
return []
|
| 159 |
+
|
| 160 |
+
logging.info(
|
| 161 |
+
f"Loaded {len(docs_json)} chunks from Appwrite for URL: {selected_url}"
|
| 162 |
+
)
|
| 163 |
+
return docs_json
|
| 164 |
+
except Exception as e:
|
| 165 |
+
logging.error(f"Error loading docs from Appwrite: {str(e)}")
|
| 166 |
+
# Return empty list on error instead of raising
|
| 167 |
+
return []
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
# Global variables for BM25
|
| 171 |
+
docs_json = None
|
| 172 |
+
bm25_corpus = None
|
| 173 |
+
bm25_titles = None
|
| 174 |
+
bm25 = None
|
| 175 |
+
current_url = None # Track current URL to detect changes
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
def reset_bm25_data():
|
| 179 |
+
"""Reset BM25 data to force reinitialization"""
|
| 180 |
+
global docs_json, bm25_corpus, bm25_titles, bm25, current_url
|
| 181 |
+
docs_json = None
|
| 182 |
+
bm25_corpus = None
|
| 183 |
+
bm25_titles = None
|
| 184 |
+
bm25 = None
|
| 185 |
+
current_url = None
|
| 186 |
+
logging.info("BM25 data reset")
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
def initialize_bm25(selected_url=None):
|
| 190 |
+
"""Initialize BM25 with document chunks from Appwrite for specific documentation"""
|
| 191 |
+
global docs_json, bm25_corpus, bm25_titles, bm25, current_url
|
| 192 |
+
|
| 193 |
+
# Reset if URL has changed
|
| 194 |
+
if current_url != selected_url:
|
| 195 |
+
logging.info(
|
| 196 |
+
f"URL changed from {current_url} to {selected_url}, resetting BM25 data"
|
| 197 |
+
)
|
| 198 |
+
reset_bm25_data()
|
| 199 |
+
current_url = selected_url
|
| 200 |
+
|
| 201 |
+
if docs_json is None:
|
| 202 |
+
docs_json = load_docs_from_appwrite(selected_url)
|
| 203 |
+
|
| 204 |
+
if not docs_json:
|
| 205 |
+
# If no chunks available, create empty BM25
|
| 206 |
+
bm25_corpus = []
|
| 207 |
+
bm25_titles = []
|
| 208 |
+
bm25 = None # Don't initialize BM25 with empty corpus
|
| 209 |
+
logging.warning(
|
| 210 |
+
f"BM25 initialized with no chunks for URL: {selected_url} - no documentation processed yet"
|
| 211 |
+
)
|
| 212 |
+
else:
|
| 213 |
+
bm25_corpus = [doc["content"] for doc in docs_json]
|
| 214 |
+
bm25_titles = [doc.get("title", "") for doc in docs_json]
|
| 215 |
+
bm25 = BM25Okapi([doc.split() for doc in bm25_corpus])
|
| 216 |
+
logging.info(
|
| 217 |
+
f"BM25 initialized with {len(docs_json)} chunks for URL: {selected_url}"
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
# Cross-encoder for re-ranking (kept on CPU as requested - no GPU acceleration for re-ranking)
|
| 222 |
+
cross_encoder_model = "cross-encoder/ms-marco-MiniLM-L-6-v2"
|
| 223 |
+
cross_tokenizer = AutoTokenizer.from_pretrained(cross_encoder_model)
|
| 224 |
+
cross_model = AutoModelForSequenceClassification.from_pretrained(cross_encoder_model)
|
| 225 |
+
logging.info(
|
| 226 |
+
"π Cross-encoder model initialized on CPU (re-ranking excluded from GPU acceleration)"
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
# Create context summary for relevance checking
|
| 231 |
+
def create_context_summary(selected_url=None):
|
| 232 |
+
"""Create a comprehensive summary of available context for relevance checking"""
|
| 233 |
+
try:
|
| 234 |
+
# Initialize BM25 if not already done
|
| 235 |
+
initialize_bm25(selected_url)
|
| 236 |
+
|
| 237 |
+
# Get unique titles from the corpus
|
| 238 |
+
if bm25_titles:
|
| 239 |
+
unique_titles = list(set(bm25_titles))
|
| 240 |
+
|
| 241 |
+
# Create a more comprehensive context summary
|
| 242 |
+
# Include more titles and also extract key topics from content
|
| 243 |
+
context_parts = []
|
| 244 |
+
|
| 245 |
+
# Add document titles (increase from 20 to 50 for better coverage)
|
| 246 |
+
context_parts.append("Document titles:")
|
| 247 |
+
context_parts.extend(unique_titles[:50])
|
| 248 |
+
|
| 249 |
+
# Add key topics extracted from content
|
| 250 |
+
if bm25_corpus:
|
| 251 |
+
# Extract key terms from the first few documents
|
| 252 |
+
key_terms = set()
|
| 253 |
+
for doc_content in bm25_corpus[:100]: # Check first 100 docs
|
| 254 |
+
# Extract important terms (simple approach)
|
| 255 |
+
words = doc_content.lower().split()
|
| 256 |
+
# Look for React-specific terms
|
| 257 |
+
react_terms = [
|
| 258 |
+
word
|
| 259 |
+
for word in words
|
| 260 |
+
if any(
|
| 261 |
+
term in word
|
| 262 |
+
for term in [
|
| 263 |
+
"hook",
|
| 264 |
+
"component",
|
| 265 |
+
"jsx",
|
| 266 |
+
"prop",
|
| 267 |
+
"state",
|
| 268 |
+
"effect",
|
| 269 |
+
"context",
|
| 270 |
+
"reducer",
|
| 271 |
+
"ref",
|
| 272 |
+
"memo",
|
| 273 |
+
"callback",
|
| 274 |
+
"usememo",
|
| 275 |
+
"usestate",
|
| 276 |
+
"useeffect",
|
| 277 |
+
"usecontext",
|
| 278 |
+
"usereducer",
|
| 279 |
+
"useref",
|
| 280 |
+
"usecallback",
|
| 281 |
+
"react",
|
| 282 |
+
"render",
|
| 283 |
+
"virtual",
|
| 284 |
+
"dom",
|
| 285 |
+
"lifecycle",
|
| 286 |
+
]
|
| 287 |
+
)
|
| 288 |
+
]
|
| 289 |
+
key_terms.update(react_terms[:10]) # Limit per document
|
| 290 |
+
|
| 291 |
+
if key_terms:
|
| 292 |
+
context_parts.append("\nKey topics found:")
|
| 293 |
+
context_parts.extend(list(key_terms)[:30]) # Top 30 key terms
|
| 294 |
+
|
| 295 |
+
# Add URL information for context
|
| 296 |
+
if selected_url:
|
| 297 |
+
context_parts.append(f"\nDocumentation source: {selected_url}")
|
| 298 |
+
if "react" in selected_url.lower():
|
| 299 |
+
context_parts.append(
|
| 300 |
+
"This is React documentation covering components, hooks, JSX, state management, and React concepts."
|
| 301 |
+
)
|
| 302 |
+
elif "python" in selected_url.lower():
|
| 303 |
+
context_parts.append(
|
| 304 |
+
"This is Python documentation covering language features, standard library, and Python concepts."
|
| 305 |
+
)
|
| 306 |
+
elif "vue" in selected_url.lower():
|
| 307 |
+
context_parts.append(
|
| 308 |
+
"This is Vue.js documentation covering components, directives, and Vue concepts."
|
| 309 |
+
)
|
| 310 |
+
# Add more URL-specific context as needed
|
| 311 |
+
|
| 312 |
+
context_summary = "\n".join(context_parts)
|
| 313 |
+
else:
|
| 314 |
+
context_summary = "No documentation available yet"
|
| 315 |
+
|
| 316 |
+
logging.info(f"Context summary created with {len(context_summary)} characters")
|
| 317 |
+
return context_summary
|
| 318 |
+
except Exception as e:
|
| 319 |
+
logging.error(f"Error creating context summary: {str(e)}")
|
| 320 |
+
return "Documentation topics"
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
# Hybrid retrieval function
|
| 324 |
+
def hybrid_retrieve(query, selected_url=None, dense_k=5, bm25_k=5, rerank_k=5):
|
| 325 |
+
logging.info(f"Hybrid retrieval for query: {query} with URL: {selected_url}")
|
| 326 |
+
|
| 327 |
+
# Initialize BM25 if not already done
|
| 328 |
+
initialize_bm25(selected_url)
|
| 329 |
+
|
| 330 |
+
# Dense retrieval
|
| 331 |
+
dense_docs = retriever.get_relevant_documents(query)
|
| 332 |
+
logging.info(f"Dense docs retrieved: {len(dense_docs)}")
|
| 333 |
+
dense_set = set((d.metadata["title"], d.page_content) for d in dense_docs)
|
| 334 |
+
|
| 335 |
+
# BM25 retrieval
|
| 336 |
+
if (
|
| 337 |
+
bm25_corpus and bm25 is not None
|
| 338 |
+
): # Only if we have chunks and BM25 is initialized
|
| 339 |
+
bm25_scores = bm25.get_scores(query.split())
|
| 340 |
+
bm25_indices = sorted(
|
| 341 |
+
range(len(bm25_scores)), key=lambda i: bm25_scores[i], reverse=True
|
| 342 |
+
)[:bm25_k]
|
| 343 |
+
bm25_docs = [
|
| 344 |
+
Document(
|
| 345 |
+
page_content=bm25_corpus[i],
|
| 346 |
+
metadata={"title": bm25_titles[i]},
|
| 347 |
+
)
|
| 348 |
+
for i in bm25_indices
|
| 349 |
+
]
|
| 350 |
+
logging.info(f"BM25 docs retrieved: {len(bm25_docs)}")
|
| 351 |
+
bm25_set = set((d.metadata["title"], d.page_content) for d in bm25_docs)
|
| 352 |
+
else:
|
| 353 |
+
bm25_docs = []
|
| 354 |
+
bm25_set = set()
|
| 355 |
+
logging.info("No BM25 docs retrieved - no chunks available")
|
| 356 |
+
|
| 357 |
+
# Merge and deduplicate
|
| 358 |
+
all_docs = list(
|
| 359 |
+
{(d[0], d[1]): d for d in list(dense_set) + list(bm25_set)}.values()
|
| 360 |
+
)
|
| 361 |
+
all_doc_objs = [
|
| 362 |
+
Document(
|
| 363 |
+
page_content=c,
|
| 364 |
+
metadata={"title": t},
|
| 365 |
+
)
|
| 366 |
+
for t, c in all_docs
|
| 367 |
+
]
|
| 368 |
+
logging.info(f"Total unique docs before re-ranking: {len(all_doc_objs)}")
|
| 369 |
+
|
| 370 |
+
# Re-rank with cross-encoder
|
| 371 |
+
pairs = [(query, doc.page_content) for doc in all_doc_objs]
|
| 372 |
+
inputs = cross_tokenizer.batch_encode_plus(
|
| 373 |
+
pairs, padding=True, truncation=True, return_tensors="pt", max_length=512
|
| 374 |
+
)
|
| 375 |
+
with torch.no_grad():
|
| 376 |
+
scores = cross_model(**inputs).logits.squeeze().cpu().numpy()
|
| 377 |
+
ranked = sorted(zip(all_doc_objs, scores), key=lambda x: x[1], reverse=True)[
|
| 378 |
+
:rerank_k
|
| 379 |
+
]
|
| 380 |
+
logging.info(f"Docs after re-ranking: {len(ranked)}")
|
| 381 |
+
return [doc for doc, _ in ranked]
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
# Relevance check function
|
| 385 |
+
def check_relevance(question, selected_url=None):
|
| 386 |
+
"""Check if the question is relevant to the available documentation"""
|
| 387 |
+
try:
|
| 388 |
+
logging.info(
|
| 389 |
+
f"Checking relevance for question: {question} with URL: {selected_url}"
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
# First, check for obvious relevant keywords based on the URL
|
| 393 |
+
question_lower = question.lower()
|
| 394 |
+
if selected_url:
|
| 395 |
+
url_lower = selected_url.lower()
|
| 396 |
+
|
| 397 |
+
# Define technology-specific keywords
|
| 398 |
+
tech_keywords = {
|
| 399 |
+
"react": [
|
| 400 |
+
"hook",
|
| 401 |
+
"component",
|
| 402 |
+
"jsx",
|
| 403 |
+
"prop",
|
| 404 |
+
"state",
|
| 405 |
+
"effect",
|
| 406 |
+
"context",
|
| 407 |
+
"reducer",
|
| 408 |
+
"ref",
|
| 409 |
+
"memo",
|
| 410 |
+
"callback",
|
| 411 |
+
"render",
|
| 412 |
+
"virtual",
|
| 413 |
+
"dom",
|
| 414 |
+
"lifecycle",
|
| 415 |
+
"react",
|
| 416 |
+
],
|
| 417 |
+
"python": [
|
| 418 |
+
"python",
|
| 419 |
+
"function",
|
| 420 |
+
"class",
|
| 421 |
+
"module",
|
| 422 |
+
"import",
|
| 423 |
+
"variable",
|
| 424 |
+
"list",
|
| 425 |
+
"dict",
|
| 426 |
+
"string",
|
| 427 |
+
"integer",
|
| 428 |
+
"loop",
|
| 429 |
+
"condition",
|
| 430 |
+
"exception",
|
| 431 |
+
"library",
|
| 432 |
+
],
|
| 433 |
+
"vue": [
|
| 434 |
+
"vue",
|
| 435 |
+
"component",
|
| 436 |
+
"directive",
|
| 437 |
+
"template",
|
| 438 |
+
"computed",
|
| 439 |
+
"watch",
|
| 440 |
+
"method",
|
| 441 |
+
"prop",
|
| 442 |
+
"emit",
|
| 443 |
+
"slot",
|
| 444 |
+
"router",
|
| 445 |
+
"vuex",
|
| 446 |
+
],
|
| 447 |
+
"node": [
|
| 448 |
+
"node",
|
| 449 |
+
"npm",
|
| 450 |
+
"express",
|
| 451 |
+
"server",
|
| 452 |
+
"module",
|
| 453 |
+
"require",
|
| 454 |
+
"async",
|
| 455 |
+
"callback",
|
| 456 |
+
"promise",
|
| 457 |
+
"stream",
|
| 458 |
+
],
|
| 459 |
+
"django": [
|
| 460 |
+
"django",
|
| 461 |
+
"model",
|
| 462 |
+
"view",
|
| 463 |
+
"template",
|
| 464 |
+
"form",
|
| 465 |
+
"admin",
|
| 466 |
+
"url",
|
| 467 |
+
"middleware",
|
| 468 |
+
"orm",
|
| 469 |
+
"queryset",
|
| 470 |
+
],
|
| 471 |
+
"docker": [
|
| 472 |
+
"docker",
|
| 473 |
+
"container",
|
| 474 |
+
"image",
|
| 475 |
+
"dockerfile",
|
| 476 |
+
"compose",
|
| 477 |
+
"volume",
|
| 478 |
+
"network",
|
| 479 |
+
"registry",
|
| 480 |
+
],
|
| 481 |
+
"kubernetes": [
|
| 482 |
+
"kubernetes",
|
| 483 |
+
"pod",
|
| 484 |
+
"service",
|
| 485 |
+
"deployment",
|
| 486 |
+
"namespace",
|
| 487 |
+
"ingress",
|
| 488 |
+
"configmap",
|
| 489 |
+
"secret",
|
| 490 |
+
],
|
| 491 |
+
}
|
| 492 |
+
|
| 493 |
+
# Check if question contains relevant keywords for the current documentation
|
| 494 |
+
for tech, keywords in tech_keywords.items():
|
| 495 |
+
if tech in url_lower:
|
| 496 |
+
if any(keyword in question_lower for keyword in keywords):
|
| 497 |
+
logging.info(
|
| 498 |
+
f"Question contains relevant {tech} keywords - bypassing LLM relevance check"
|
| 499 |
+
)
|
| 500 |
+
return True
|
| 501 |
+
|
| 502 |
+
# Create context summary
|
| 503 |
+
context_summary = create_context_summary(selected_url)
|
| 504 |
+
|
| 505 |
+
# Log the context summary for debugging
|
| 506 |
+
logging.info(f"Context summary for relevance check: {context_summary[:500]}...")
|
| 507 |
+
|
| 508 |
+
# Check relevance using LLM
|
| 509 |
+
relevance_response = llm.invoke(
|
| 510 |
+
relevance_prompt.format(context=context_summary, question=question)
|
| 511 |
+
)
|
| 512 |
+
|
| 513 |
+
# Parse the response
|
| 514 |
+
response_text = relevance_response.content.strip().upper()
|
| 515 |
+
is_relevant = "YES" in response_text
|
| 516 |
+
|
| 517 |
+
logging.info(
|
| 518 |
+
f"Relevance check result: {response_text} (Relevant: {is_relevant})"
|
| 519 |
+
)
|
| 520 |
+
|
| 521 |
+
# If LLM says NO but we have keyword matches, override to YES
|
| 522 |
+
if not is_relevant and selected_url:
|
| 523 |
+
url_lower = selected_url.lower()
|
| 524 |
+
if "react" in url_lower and any(
|
| 525 |
+
term in question_lower
|
| 526 |
+
for term in ["hook", "component", "jsx", "state", "prop", "react"]
|
| 527 |
+
):
|
| 528 |
+
logging.info(
|
| 529 |
+
"Overriding LLM relevance check - question contains React-specific terms"
|
| 530 |
+
)
|
| 531 |
+
return True
|
| 532 |
+
elif "python" in url_lower and any(
|
| 533 |
+
term in question_lower
|
| 534 |
+
for term in ["python", "function", "class", "module"]
|
| 535 |
+
):
|
| 536 |
+
logging.info(
|
| 537 |
+
"Overriding LLM relevance check - question contains Python-specific terms"
|
| 538 |
+
)
|
| 539 |
+
return True
|
| 540 |
+
|
| 541 |
+
return is_relevant
|
| 542 |
+
|
| 543 |
+
except Exception as e:
|
| 544 |
+
logging.error(f"Error in relevance check: {str(e)}")
|
| 545 |
+
# Default to relevant if check fails
|
| 546 |
+
logging.info("Defaulting to relevant due to error")
|
| 547 |
+
return True
|
| 548 |
+
|
| 549 |
+
|
| 550 |
+
# Question decomposition function
|
| 551 |
+
def decompose_question(question):
|
| 552 |
+
try:
|
| 553 |
+
logging.info(f"Decomposing question: {question}")
|
| 554 |
+
decomposition_response = llm.invoke(
|
| 555 |
+
decomposition_prompt.format(question=question)
|
| 556 |
+
)
|
| 557 |
+
logging.info(
|
| 558 |
+
f"Decomposition response: {decomposition_response.content[:200]}..."
|
| 559 |
+
)
|
| 560 |
+
|
| 561 |
+
# Extract sub-questions from the response
|
| 562 |
+
content = decomposition_response.content
|
| 563 |
+
sub_questions = []
|
| 564 |
+
|
| 565 |
+
# Use regex to extract numbered questions
|
| 566 |
+
pattern = r"\d+\.\s*(.+)"
|
| 567 |
+
matches = re.findall(pattern, content, re.MULTILINE)
|
| 568 |
+
logging.info(f"Regex matches: {matches}")
|
| 569 |
+
|
| 570 |
+
for match in matches[:4]: # Take first 4 matches
|
| 571 |
+
sub_question = match.strip()
|
| 572 |
+
if sub_question:
|
| 573 |
+
sub_questions.append(sub_question)
|
| 574 |
+
|
| 575 |
+
# If we don't get exactly 4 questions, create variations
|
| 576 |
+
while len(sub_questions) < 4:
|
| 577 |
+
sub_questions.append(f"Additional aspect of: {question}")
|
| 578 |
+
|
| 579 |
+
logging.info(f"Decomposed into {len(sub_questions)} sub-questions")
|
| 580 |
+
return sub_questions[:4]
|
| 581 |
+
except Exception as e:
|
| 582 |
+
logging.error(f"Error in decompose_question: {str(e)}")
|
| 583 |
+
# Fallback to simple variations
|
| 584 |
+
return [
|
| 585 |
+
f"What is {question}?",
|
| 586 |
+
f"How does {question} work?",
|
| 587 |
+
f"When to use {question}?",
|
| 588 |
+
f"Examples of {question}",
|
| 589 |
+
]
|
| 590 |
+
|
| 591 |
+
|
| 592 |
+
# RAG chain
|
| 593 |
+
def format_docs(docs):
|
| 594 |
+
logging.info(f"Formatting {len(docs)} docs for LLM context.")
|
| 595 |
+
return "\n\n".join(f"{doc.metadata['title']}:\n{doc.page_content}" for doc in docs)
|
| 596 |
+
|
| 597 |
+
|
| 598 |
+
def process_question_with_relevance_check(
|
| 599 |
+
original_question, selected_url=None, debug=False
|
| 600 |
+
):
|
| 601 |
+
try:
|
| 602 |
+
logging.info(
|
| 603 |
+
f"Processing question with relevance check: {original_question} for URL: {selected_url}"
|
| 604 |
+
)
|
| 605 |
+
|
| 606 |
+
# Step 1: Check if the question is relevant to the documentation
|
| 607 |
+
is_relevant = check_relevance(original_question, selected_url)
|
| 608 |
+
|
| 609 |
+
if debug:
|
| 610 |
+
print(f"π DEBUG: Question: {original_question}")
|
| 611 |
+
print(f"π DEBUG: URL: {selected_url}")
|
| 612 |
+
print(f"π DEBUG: Relevance check result: {is_relevant}")
|
| 613 |
+
|
| 614 |
+
if not is_relevant:
|
| 615 |
+
logging.info(
|
| 616 |
+
f"Question not relevant to available documentation: {original_question}"
|
| 617 |
+
)
|
| 618 |
+
error_msg = f'No context provided for "{original_question}". This question doesn\'t appear to be related to the documentation that has been processed. Please ask a question about the documentation topics that are available.'
|
| 619 |
+
|
| 620 |
+
if debug:
|
| 621 |
+
print(f"π DEBUG: Returning relevance error: {error_msg}")
|
| 622 |
+
# Also show the context that was used for relevance check
|
| 623 |
+
context = create_context_summary(selected_url)
|
| 624 |
+
print(f"π DEBUG: Context used for relevance check: {context[:500]}...")
|
| 625 |
+
|
| 626 |
+
return error_msg
|
| 627 |
+
|
| 628 |
+
# Step 2: If relevant, proceed with decomposition
|
| 629 |
+
sub_questions = decompose_question(original_question)
|
| 630 |
+
logging.info(f"Sub-questions: {sub_questions}")
|
| 631 |
+
|
| 632 |
+
if debug:
|
| 633 |
+
print(f"π DEBUG: Sub-questions: {sub_questions}")
|
| 634 |
+
|
| 635 |
+
# Step 3: Get answers for each sub-question
|
| 636 |
+
sub_answers = []
|
| 637 |
+
for i, sub_q in enumerate(sub_questions, 1):
|
| 638 |
+
logging.info(f"Processing sub-question {i}: {sub_q}")
|
| 639 |
+
|
| 640 |
+
# Retrieve context for this sub-question
|
| 641 |
+
context = format_docs(hybrid_retrieve(sub_q, selected_url))
|
| 642 |
+
logging.info(f"Context length for sub-question {i}: {len(context)}")
|
| 643 |
+
|
| 644 |
+
if debug:
|
| 645 |
+
print(f"π DEBUG: Sub-question {i}: {sub_q}")
|
| 646 |
+
print(f"π DEBUG: Context length: {len(context)}")
|
| 647 |
+
|
| 648 |
+
# Get answer for this sub-question
|
| 649 |
+
sub_answer = llm.invoke(prompt.format(context=context, question=sub_q))
|
| 650 |
+
logging.info(f"Sub-answer {i}: {sub_answer.content[:100]}...")
|
| 651 |
+
sub_answers.append(f"{i}. {sub_q}\nAnswer: {sub_answer.content}")
|
| 652 |
+
|
| 653 |
+
# Step 4: Synthesize the final answer
|
| 654 |
+
sub_answers_text = "\n\n".join(sub_answers)
|
| 655 |
+
logging.info(f"Sub-answers text length: {len(sub_answers_text)}")
|
| 656 |
+
|
| 657 |
+
final_answer = llm.invoke(
|
| 658 |
+
synthesis_prompt.format(
|
| 659 |
+
original_question=original_question, sub_answers=sub_answers_text
|
| 660 |
+
)
|
| 661 |
+
)
|
| 662 |
+
|
| 663 |
+
logging.info(f"Final answer: {final_answer.content[:100]}...")
|
| 664 |
+
|
| 665 |
+
if debug:
|
| 666 |
+
print(f"π DEBUG: Final answer length: {len(final_answer.content)}")
|
| 667 |
+
|
| 668 |
+
return final_answer.content
|
| 669 |
+
|
| 670 |
+
except Exception as e:
|
| 671 |
+
logging.error(f"Error in process_question_with_relevance_check: {str(e)}")
|
| 672 |
+
return f"Error processing question: {str(e)}"
|
| 673 |
+
|
| 674 |
+
|
| 675 |
+
# Enhanced RAG chain with relevance check
|
| 676 |
+
def create_rag_chain(selected_url=None, debug=False):
|
| 677 |
+
"""Create a RAG chain for the selected documentation"""
|
| 678 |
+
|
| 679 |
+
def process_with_url(question):
|
| 680 |
+
return process_question_with_relevance_check(question, selected_url, debug)
|
| 681 |
+
|
| 682 |
+
return RunnableLambda(process_with_url)
|
| 683 |
+
|
| 684 |
+
|
| 685 |
+
# Default RAG chain (for backward compatibility)
|
| 686 |
+
rag_chain = create_rag_chain()
|
| 687 |
+
|
| 688 |
+
# Run it for local testing
|
| 689 |
+
if __name__ == "__main__":
|
| 690 |
+
while True:
|
| 691 |
+
query = input("\n Ask a question about the documentation: ")
|
| 692 |
+
if query.lower() in ["exit", "quit"]:
|
| 693 |
+
break
|
| 694 |
+
response = rag_chain.invoke(query)
|
| 695 |
+
print("\nπ€ Answer:\n", response)
|
requirements.txt
CHANGED
|
@@ -13,4 +13,7 @@ transformers
|
|
| 13 |
sentence-transformers
|
| 14 |
torch
|
| 15 |
numpy
|
| 16 |
-
scikit-learn
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
sentence-transformers
|
| 14 |
torch
|
| 15 |
numpy
|
| 16 |
+
scikit-learn
|
| 17 |
+
appwrite
|
| 18 |
+
aiohttp
|
| 19 |
+
pinecone-client
|