Spaces:
Sleeping
Sleeping
Ajit Panday
commited on
Commit
·
0680865
1
Parent(s):
d538a8c
Initial commit: Customer Support Chatbot with DialoGPT-medium
Browse files- app.py +16 -7
- requirements.txt +4 -1
- train.py +87 -0
app.py
CHANGED
|
@@ -3,18 +3,25 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
| 3 |
import torch
|
| 4 |
from datasets import load_dataset
|
| 5 |
import random
|
|
|
|
| 6 |
|
| 7 |
-
#
|
| 8 |
-
|
| 9 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 10 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 11 |
|
| 12 |
# Load the customer support dataset
|
| 13 |
dataset = load_dataset("Victorano/customer-support-1k")
|
| 14 |
|
| 15 |
def generate_response(message, history):
|
| 16 |
-
#
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
# Generate response
|
| 20 |
with torch.no_grad():
|
|
@@ -31,13 +38,15 @@ def generate_response(message, history):
|
|
| 31 |
|
| 32 |
# Decode and return the response
|
| 33 |
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
|
|
|
|
|
|
| 34 |
return response
|
| 35 |
|
| 36 |
# Create the Gradio interface
|
| 37 |
with gr.Blocks(css="footer {display: none !important}") as demo:
|
| 38 |
gr.Markdown("""
|
| 39 |
# 🤖 Customer Support Chatbot
|
| 40 |
-
This chatbot is
|
| 41 |
""")
|
| 42 |
|
| 43 |
chatbot = gr.Chatbot(
|
|
|
|
| 3 |
import torch
|
| 4 |
from datasets import load_dataset
|
| 5 |
import random
|
| 6 |
+
import os
|
| 7 |
|
| 8 |
+
# Check if fine-tuned model exists, otherwise use base model
|
| 9 |
+
model_path = "./customer_support_chatbot" if os.path.exists("./customer_support_chatbot") else "microsoft/DialoGPT-medium"
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 11 |
+
model = AutoModelForCausalLM.from_pretrained(model_path)
|
| 12 |
|
| 13 |
# Load the customer support dataset
|
| 14 |
dataset = load_dataset("Victorano/customer-support-1k")
|
| 15 |
|
| 16 |
def generate_response(message, history):
|
| 17 |
+
# Format the input with conversation history
|
| 18 |
+
conversation = ""
|
| 19 |
+
for user_msg, bot_msg in history:
|
| 20 |
+
conversation += f"Customer: {user_msg}\nSupport: {bot_msg}\n"
|
| 21 |
+
conversation += f"Customer: {message}\nSupport:"
|
| 22 |
+
|
| 23 |
+
# Encode the conversation
|
| 24 |
+
input_ids = tokenizer.encode(conversation, return_tensors='pt')
|
| 25 |
|
| 26 |
# Generate response
|
| 27 |
with torch.no_grad():
|
|
|
|
| 38 |
|
| 39 |
# Decode and return the response
|
| 40 |
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 41 |
+
# Extract only the last response (after "Support:")
|
| 42 |
+
response = response.split("Support:")[-1].strip()
|
| 43 |
return response
|
| 44 |
|
| 45 |
# Create the Gradio interface
|
| 46 |
with gr.Blocks(css="footer {display: none !important}") as demo:
|
| 47 |
gr.Markdown("""
|
| 48 |
# 🤖 Customer Support Chatbot
|
| 49 |
+
This chatbot is fine-tuned on customer support conversations using DialoGPT-medium.
|
| 50 |
""")
|
| 51 |
|
| 52 |
chatbot = gr.Chatbot(
|
requirements.txt
CHANGED
|
@@ -1,4 +1,7 @@
|
|
| 1 |
gradio==4.19.2
|
| 2 |
transformers==4.37.2
|
| 3 |
torch==2.2.0
|
| 4 |
-
datasets==2.17.1
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
gradio==4.19.2
|
| 2 |
transformers==4.37.2
|
| 3 |
torch==2.2.0
|
| 4 |
+
datasets==2.17.1
|
| 5 |
+
accelerate==0.27.2
|
| 6 |
+
evaluate==0.4.1
|
| 7 |
+
scikit-learn==1.4.0
|
train.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, DataCollatorForLanguageModeling
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
import numpy as np
|
| 5 |
+
from typing import Dict, List
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
+
def load_and_prepare_data():
|
| 9 |
+
# Load the dataset
|
| 10 |
+
dataset = load_dataset("Victorano/customer-support-1k")
|
| 11 |
+
|
| 12 |
+
# Load tokenizer
|
| 13 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
| 14 |
+
|
| 15 |
+
# Function to format conversations
|
| 16 |
+
def format_conversation(example):
|
| 17 |
+
# Combine question and answer into a single conversation
|
| 18 |
+
conversation = f"Customer: {example['question']}\nSupport: {example['answer']}"
|
| 19 |
+
return {"text": conversation}
|
| 20 |
+
|
| 21 |
+
# Apply formatting to both train and test sets
|
| 22 |
+
formatted_dataset = dataset.map(
|
| 23 |
+
format_conversation,
|
| 24 |
+
remove_columns=dataset["train"].column_names
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
# Tokenize the dataset
|
| 28 |
+
def tokenize_function(examples):
|
| 29 |
+
return tokenizer(
|
| 30 |
+
examples["text"],
|
| 31 |
+
padding="max_length",
|
| 32 |
+
truncation=True,
|
| 33 |
+
max_length=512,
|
| 34 |
+
return_tensors="pt"
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
tokenized_dataset = formatted_dataset.map(
|
| 38 |
+
tokenize_function,
|
| 39 |
+
batched=True,
|
| 40 |
+
remove_columns=formatted_dataset["train"].column_names
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
return tokenized_dataset, tokenizer
|
| 44 |
+
|
| 45 |
+
def train_model():
|
| 46 |
+
# Load and prepare data
|
| 47 |
+
tokenized_dataset, tokenizer = load_and_prepare_data()
|
| 48 |
+
|
| 49 |
+
# Load model
|
| 50 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
|
| 51 |
+
|
| 52 |
+
# Define training arguments
|
| 53 |
+
training_args = TrainingArguments(
|
| 54 |
+
output_dir="./customer_support_chatbot",
|
| 55 |
+
num_train_epochs=3,
|
| 56 |
+
per_device_train_batch_size=4,
|
| 57 |
+
per_device_eval_batch_size=4,
|
| 58 |
+
warmup_steps=500,
|
| 59 |
+
weight_decay=0.01,
|
| 60 |
+
logging_dir="./logs",
|
| 61 |
+
logging_steps=100,
|
| 62 |
+
save_strategy="epoch",
|
| 63 |
+
evaluation_strategy="epoch",
|
| 64 |
+
load_best_model_at_end=True,
|
| 65 |
+
push_to_hub=False,
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
# Initialize trainer
|
| 69 |
+
trainer = Trainer(
|
| 70 |
+
model=model,
|
| 71 |
+
args=training_args,
|
| 72 |
+
train_dataset=tokenized_dataset["train"],
|
| 73 |
+
eval_dataset=tokenized_dataset["test"],
|
| 74 |
+
data_collator=DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False),
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
# Train the model
|
| 78 |
+
trainer.train()
|
| 79 |
+
|
| 80 |
+
# Save the model and tokenizer
|
| 81 |
+
model.save_pretrained("./customer_support_chatbot")
|
| 82 |
+
tokenizer.save_pretrained("./customer_support_chatbot")
|
| 83 |
+
|
| 84 |
+
print("Training completed! Model saved to ./customer_support_chatbot")
|
| 85 |
+
|
| 86 |
+
if __name__ == "__main__":
|
| 87 |
+
train_model()
|