PanagiotisMark's picture
Update gradio_app.py
dcfabec verified
import os
import gradio as gr
import json
import pandas as pd
import requests as req
# Retrieve HF space secrets
auth_key = os.getenv('AUTH_KEY')
api_url = os.getenv('API_URL')
api_port = os.getenv('API_PORT')
FEEDBACK_IP = os.getenv('FEEDBACK_IP')
FEEDBACK_PORT = os.getenv('FEEDBACK_PORT')
FEEDBACK_PATH = os.getenv('FEEDBACK_PATH')
API_KEY = os.getenv('API_KEY')
HEADERS = {
'Content-Type': 'application/json'
}
# Define feedback function to send like/dislike feedback
def send_feedback(request_data, response_data, like_reaction, dislike_reaction):
print("Sending feedback...", request_data, response_data, like_reaction, dislike_reaction)
# Construct the feedback payload
feedback_payload = {
"tool_id": 3,
"request": json.dumps(request_data),
"result": json.dumps(response_data),
"like": like_reaction,
"dislike": dislike_reaction
}
headers = {
'Content-Type': 'application/json',
'x-api-key': API_KEY
}
try:
# Construct feedback URL and send the POST request
feedback_url = f"http://{FEEDBACK_IP}:{FEEDBACK_PORT}{FEEDBACK_PATH}"
response = req.post(feedback_url, json=feedback_payload, headers=headers)
response.raise_for_status() # Raise an error for bad responses
print("Feedback sent successfully.")
return {"message": "Feedback sent successfully"}
except req.RequestException as e:
print("Error sending feedback:", e)
return {"error": str(e)}
# Define feedback toggle functionality
def toggle_feedback(request_data, response_data, like_clicked, dislike_clicked):
print("Toggling feedback...", like_clicked, dislike_clicked)
# Determine feedback type
like_reaction = True if like_clicked else False
dislike_reaction = True if dislike_clicked else False
# Send feedback to the backend
feedback_response = send_feedback(request_data, response_data, like_reaction, dislike_reaction)
# Return appropriate message based on the feedback response
if 'error' in feedback_response:
return f"Failed to send feedback: {feedback_response['error']}"
else:
return "Feedback sent successfully!"
def preprocess_and_flatten(json_results, mode, meta_fields=None):
# Ensure 'meta_fields' is a list or set default fields
if meta_fields is None:
meta_fields = ['doc_id', 'details', 'domain']
# Check if json_results is a valid dictionary
if not isinstance(json_results, dict):
print(f"Invalid JSON results: Expected a dictionary but got {type(json_results)}")
return pd.DataFrame() # Return an empty DataFrame if json_results is not a dictionary
# Collect flattened data
flattened_data = []
# Mode-based logic
if mode == 'news_analysis':
# Handle 'claim_objects' for news analysis mode
claim_objects = json_results.get('claim_objects', [])
if isinstance(claim_objects, list):
for item in claim_objects:
flattened_data.append({
'doc_id': json_results.get('doc_id'),
'details': json_results.get('details'),
'domain': json_results.get('domain'),
'topic': item.get('topic', ''),
'claim': item.get('claim', ''),
'claimer': item.get('claimer', '')
})
elif mode == 'claim_verification':
# Handle 'support', 'refute', 'no_info' for claim verification mode
nested_fields = ['support', 'refute', 'no_info']
for field in nested_fields:
nested_items = json_results.get(field, [])
if not isinstance(nested_items, list):
continue
# Loop over each item in the nested field and flatten
for item in nested_items:
flattened_data.append({
'doc_id': json_results.get('doc_id'),
'details': json_results.get('details'),
'category': field, # Mark which category the item belongs to (support/refute/no_info)
'sentence': item.get('sentence', ''),
'doi': item.get('doi', '')
})
# Convert to DataFrame
dataframe_results = pd.DataFrame(flattened_data)
# Capitalize column names
dataframe_results.columns = [col.capitalize() for col in dataframe_results.columns]
# Rename columns at the end of the function, conditionally if they exist
rename_columns = {}
# Conditionally add renaming based on the mode and column existence
if 'doc_id' in dataframe_results.columns:
rename_columns['doc_id'] = 'DOC ID'
if mode == 'claim_verification':
if 'doi' in dataframe_results.columns:
rename_columns['doi'] = 'DOI'
if 'sentence' in dataframe_results.columns:
rename_columns['sentence'] = 'Sentence'
# Apply the renaming if there are any columns to rename
if rename_columns:
dataframe_results.rename(columns=rename_columns, inplace=True)
return dataframe_results
# Define the functions to handle the inputs and outputs
def news_analysis(text):
try:
response = req.post(
f"{api_url}:{api_port}/news_analysis",
json={
'doc_id': '1',
'text': text,
'auth_key': auth_key
},
headers=HEADERS
)
response.raise_for_status()
# Prepare results for JSON output
json_results = response.json()
# Flatten 'claim_objects' field
dataframe_results = preprocess_and_flatten(json_results, mode='news_analysis')
return json_results, dataframe_results
except Exception as e:
results = {'error': str(e)}
return results, pd.DataFrame()
def claim_verification(text):
try:
response = req.post(
f"{api_url}:{api_port}/claim_verification",
json={
'doc_id': '1',
'text': text,
'auth_key': auth_key
},
headers=HEADERS
)
response.raise_for_status()
# Prepare results for JSON output
json_results = response.json()
# Flatten 'support', 'refute', and 'no_info' fields
dataframe_results = preprocess_and_flatten(json_results, mode='claim_verification')
return json_results, dataframe_results
except Exception as e:
results = {'error': str(e)}
return results, pd.DataFrame()
# Define reusable feedback and export binding function
def bind_feedback_buttons(like_button, dislike_button, json_output, feedback_message):
like_button.click(
toggle_feedback,
inputs=[json_output, json_output, gr.Textbox(visible=False, value='True'), gr.Textbox(visible=False, value='False')],
outputs=[feedback_message]
)
dislike_button.click(
toggle_feedback,
inputs=[json_output, json_output, gr.Textbox(visible=False, value='False'), gr.Textbox(visible=False, value='True')],
outputs=[feedback_message]
)
def bind_export_buttons(export_csv_button, export_json_button, table_output, json_output):
export_csv_button.click(
export_results,
inputs=[table_output, gr.Textbox(visible=False, value='csv'), json_output],
outputs=[gr.File()]
)
export_json_button.click(
export_results,
inputs=[table_output, gr.Textbox(visible=False, value='json'), json_output],
outputs=[gr.File()]
)
# export function for results
def export_results(results, export_type, original_json):
print("Exporting results...", export_type)
try:
if export_type == 'csv':
# Ensure results is a DataFrame before exporting
try:
if not isinstance(results, pd.DataFrame):
results = pd.DataFrame(results)
except ValueError as e:
print("Error converting results to DataFrame:", e)
return gr.File(None), f"Error: Unable to convert results to DataFrame - {str(e)}"
csv_file_path = "exported_results.csv"
results.to_csv(csv_file_path, index=False)
print("CSV export successful:", csv_file_path)
return gr.File(csv_file_path)
elif export_type == 'json':
# Ensure original_json is serializable
if not isinstance(original_json, (dict, list)):
raise ValueError("Invalid data for JSON export")
json_file_path = "exported_results.json"
with open(json_file_path, "w") as f:
json.dump(original_json, f, indent=4)
print("JSON export successful:", json_file_path)
return gr.File(json_file_path)
else:
print("Error: Unsupported export type or no data available.")
return gr.File(None), "Error: Unsupported export type or no data available."
except (IOError, ValueError) as e:
print("Error during export:", e)
return gr.File(None), f"Error: {str(e)}"
# CSS for styling the interface
common_css = """
.unpadded_box {
display: none !important;
}
#like-dislike-container, #claim-like-dislike-container {
display: flex;
justify-content: flex-start;
margin-top: 20px; /* Increased margin to add more space between rows */
gap: 15px; /* Add gap between like and dislike buttons */
}
#like-btn, #dislike-btn, #like-claim-btn, #dislike-claim-btn, #export-csv-btn, #export-json-btn,
#export-claim-csv-btn, #export-claim-json-btn, #submit-btn, #submit-claim-btn {
background-color: #e0e0e0;
font-size: 18px;
border-radius: 8px;
padding: 12px; /* Increased padding for better look and feel */
margin: 10px; /* Added margin for spacing between buttons */
max-width: 250px;
cursor: pointer;
border: 1px solid transparent;
transition: background-color 0.3s, box-shadow 0.3s; /* Smooth hover transition */
}
#like-btn:hover, #dislike-btn:hover, #like-claim-btn:hover, #dislike-claim-btn:hover,
#submit-btn:hover, #submit-claim-btn:hover, #export-csv-btn:hover, #export-json-btn:hover,
#export-claim-csv-btn:hover, #export-claim-json-btn:hover {
background-color: #d0d0d0;
box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1); /* Add shadow on hover for depth effect */
}
.active {
background-color: #c0c0c0;
font-weight: bold;
border-color: #000;
}
.feedback-message {
font-size: 16px; /* Slightly larger for readability */
color: #4CAF50;
margin-top: 10px; /* Space between feedback message and buttons */
}
.gr-textbox, .gr-markdown {
margin-top: 15px; /* Space between input elements and titles */
}
#export-container {
margin-top: 20px; /* Add space above the export container */
gap: 15px; /* Add gap between export buttons */
}
.output-container {
margin-top: 30px; /* Add space above the output container */
}
.gr-row {
margin-top: 20px; /* Spacing for each row */
}
"""
# Define the interface for the first tab (News Analysis)
with gr.Blocks(css=common_css) as news_analysis_mode:
# Input fields for news analysis
gr.Markdown("### News Analysis")
gr.Markdown("Classify the domain of a news article and detect major claims.")
news_text_input = gr.Textbox(lines=10, label="News Article Text", placeholder="Enter the news article text")
news_submit_button = gr.Button("Submit", elem_id="submit-btn")
# Group related elements in a single container
with gr.Group(visible=False, elem_id="output-container") as output_container:
# Output fields for displaying results
table_output = gr.DataFrame(label="Table View", elem_id="table_view", interactive=False)
json_view_output = gr.JSON(label="JSON View", elem_id="json_view")
# Feedback buttons container for user reaction
reaction_label = gr.Markdown("**Reaction**")
with gr.Row(elem_id="like-dislike-container"):
like_button = gr.Button("πŸ‘ Like", elem_id="like-btn")
dislike_button = gr.Button("πŸ‘Ž Dislike", elem_id="dislike-btn")
feedback_message = gr.Markdown("")
# Export options container
export_label = gr.Markdown("**Export Options**")
with gr.Row(elem_id="export-container"):
export_csv_button = gr.Button("πŸ“„ Export as CSV", elem_id="export-csv-btn")
export_json_button = gr.Button("πŸ“ Export as JSON", elem_id="export-json-btn")
# Bind export buttons to export function for News Analysis mode
bind_export_buttons(export_csv_button, export_json_button, table_output, json_view_output)
# Bind submit button to analyze input function
news_submit_button.click(
news_analysis,
inputs=[news_text_input],
outputs=[json_view_output, table_output] # Ensure both outputs are specified here
).then(
lambda: gr.update(visible=True), # Show entire container after the first request
inputs=[],
outputs=[output_container]
)
# Bind feedback buttons for News Analysis Mode
bind_feedback_buttons(like_button, dislike_button, json_view_output, feedback_message)
# Define the interface for the second tab (Claim Verification)
with gr.Blocks(css=common_css) as claim_verification_mode:
gr.Markdown("### Claim Verification")
gr.Markdown("Verify claims made in a news article.")
claim_text_input = gr.Textbox(lines=10, label="Claim Text", placeholder="Enter the claim text")
claim_submit_button = gr.Button("Submit", elem_id="submit-claim-btn")
# Group related elements in a single container
with gr.Group(visible=False) as claim_output_container:
table_claim_output = gr.DataFrame(label="Table View", elem_id="table_view_claim", interactive=False)
json_claim_output = gr.JSON(label="JSON View", elem_id="json_view_claim")
claim_reaction_label = gr.Markdown("**Reaction**")
with gr.Row(elem_id="claim-like-dislike-container"):
like_claim_button = gr.Button("πŸ‘ Like", elem_id="like-claim-btn")
dislike_claim_button = gr.Button("πŸ‘Ž Dislike", elem_id="dislike-claim-btn")
claim_feedback_message = gr.Markdown("")
claim_export_label = gr.Markdown("**Export Options**")
with gr.Row(elem_id="export-claim-container"):
export_claim_csv_button = gr.Button("πŸ“„ Export as CSV", elem_id="export-claim-csv-btn")
export_claim_json_button = gr.Button("πŸ“ Export as JSON", elem_id="export-claim-json-btn")
# Bind the submit button to the function for verifying the claim text
claim_submit_button.click(
claim_verification,
inputs=[claim_text_input],
outputs=[json_claim_output, table_claim_output]
).then(
lambda: gr.update(visible=True), # Show entire container after the first request
inputs=[],
outputs=[claim_output_container]
)
# Bind feedback buttons for Claim Verification Mode
bind_feedback_buttons(like_claim_button, dislike_claim_button, json_claim_output, claim_feedback_message)
# Bind export buttons to export function for Claim Verification Mode
bind_export_buttons(export_claim_csv_button, export_claim_json_button, table_claim_output, json_claim_output)
# Combine the tabs into one interface
with gr.Blocks(css=common_css) as demo:
gr.TabbedInterface([news_analysis_mode, claim_verification_mode], ["News Analysis", "Claim Verification"])
# Launch the interface
demo.queue().launch(server_name="0.0.0.0", server_port=7860)