|
import streamlit as st |
|
from llama_index import VectorStoreIndex, SimpleDirectoryReader |
|
from langchain.embeddings.huggingface import HuggingFaceEmbeddings |
|
from llama_index import LangchainEmbedding, ServiceContext |
|
from llama_index import StorageContext, load_index_from_storage |
|
from llama_index import LLMPredictor |
|
|
|
from langchain import HuggingFaceHub |
|
|
|
from pathlib import Path |
|
from time import sleep |
|
import random |
|
import string |
|
import sys |
|
import os |
|
from dotenv import load_dotenv |
|
load_dotenv() |
|
|
|
st.set_page_config(page_title="Open AI Doc-Chat Assistant", layout="wide") |
|
st.subheader("Open AI Doc-Chat Assistant: Life Enhancing with AI!") |
|
|
|
css_file = "main.css" |
|
with open(css_file) as f: |
|
st.markdown("<style>{}</style>".format(f.read()), unsafe_allow_html=True) |
|
|
|
st.sidebar.markdown( |
|
""" |
|
<style> |
|
.blue-underline { |
|
text-decoration: bold; |
|
color: blue; |
|
} |
|
</style> |
|
""", |
|
unsafe_allow_html=True |
|
) |
|
|
|
st.markdown( |
|
""" |
|
<style> |
|
[data-testid=stSidebar] [data-testid=stImage]{ |
|
text-align: center; |
|
display: block; |
|
margin-left: auto; |
|
margin-right: auto; |
|
width: 50%; |
|
} |
|
</style> |
|
""", unsafe_allow_html=True |
|
) |
|
|
|
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN") |
|
|
|
wechat_image= "WeChatCode.jpg" |
|
|
|
|
|
documents = SimpleDirectoryReader('data').load_data() |
|
|
|
embed_model = LangchainEmbedding(HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2')) |
|
|
|
llm_predictor = LLMPredictor(HuggingFaceHub(repo_id="HuggingFaceH4/starchat-beta", model_kwargs={"min_length":100, "max_new_tokens":1024, "do_sample":True, "temperature":0.2,"top_k":50, "top_p":0.95, "eos_token_id":49155})) |
|
|
|
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, embed_model=embed_model) |
|
|
|
def generate_random_string(length): |
|
letters = string.ascii_lowercase |
|
return ''.join(random.choice(letters) for i in range(length)) |
|
random_string = generate_random_string(20) |
|
|
|
new_index = VectorStoreIndex.from_documents( |
|
documents, |
|
service_context=service_context, |
|
) |
|
|
|
new_index.storage_context.persist("random_string") |
|
storage_context = StorageContext.from_defaults(persist_dir="random_string") |
|
loadedindex = load_index_from_storage(storage_context=storage_context, service_context=service_context) |
|
query_engine = loadedindex.as_query_engine() |
|
|
|
question = st.text_input("Enter your query here:") |
|
display_output_text = st.checkbox("Check AI Repsonse", key="key_checkbox", help="Check me to get AI Response.") |
|
|
|
with st.sidebar: |
|
st.subheader("Valuation.pdf furnished background!") |
|
st.write("Disclaimer: This app is for information purpose only. NO liability could be claimed against whoever associated with this app in any manner. User should consult a qualified legal professional for legal advice.") |
|
st.sidebar.markdown("Contact: [aichat101@foxmail.com](mailto:aichat101@foxmail.com)") |
|
st.sidebar.markdown('WeChat: <span class="blue-underline">pat2win</span>, or scan the code below.', unsafe_allow_html=True) |
|
st.image(wechat_image) |
|
st.sidebar.markdown('<span class="blue-underline">Life Enhancing with AI.</span>', unsafe_allow_html=True) |
|
st.subheader("Enjoy chatting!") |
|
|
|
if question !="" and not question.strip().isspace() and not question == "" and not question.strip() == "" and not question.isspace(): |
|
if display_output_text==True: |
|
with st.spinner("AI Thinking...Please wait a while to Cheers!"): |
|
initial_response = query_engine.query(question) |
|
temp_ai_response=str(initial_response) |
|
final_ai_response=temp_ai_response.partition('<|end|>')[0] |
|
st.write("AI Response:\n\n"+final_ai_response) |
|
else: |
|
print("Check the Checkbox to get AI Response.") |
|
sys.exit() |
|
else: |
|
print("Please enter your question first.") |
|
st.stop() |