|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import os |
|
|
|
model_id = "i99om/phi-2" |
|
token = os.environ.get("HF_TOKEN") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token) |
|
model = AutoModelForCausalLM.from_pretrained(model_id, use_auth_token=token) |
|
|
|
def generate_text(prompt): |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
outputs = model.generate(**inputs, max_new_tokens=150) |
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
with gr.Blocks(api=True) as demo: |
|
textbox = gr.Textbox(label="ุฃุฏุฎู ุงููุต") |
|
output = gr.Textbox(label="ุงููุงุชุฌ") |
|
btn = gr.Button("ุชูููุฏ") |
|
|
|
btn.click(generate_text, inputs=textbox, outputs=output) |
|
|
|
demo.launch() |
|
|