Spaces:
Running
on
T4
Running
on
T4
fix: runtime error caused by null pointers.
Browse files- README.md +0 -2
- app.py +3 -3
- gaussiancity/generator.py +1 -1
README.md
CHANGED
@@ -10,8 +10,6 @@ pinned: false
|
|
10 |
short_description: Efficient 3D city generation in seconds!
|
11 |
---
|
12 |
|
13 |
-
IMPORTANT NOTE: We're facing technical difficulties and will resolve them as soon as possible.
|
14 |
-
|
15 |
Official demo for **[Generative Gaussian Splatting for Unbounded 3D City Generation](https://github.com/hzxie/GaussianCity) (CVPR 2025).**
|
16 |
|
17 |
- 🔥 GaussianCity is a unbounded 3D city generator based on 3D Gaussian Splatting.
|
|
|
10 |
short_description: Efficient 3D city generation in seconds!
|
11 |
---
|
12 |
|
|
|
|
|
13 |
Official demo for **[Generative Gaussian Splatting for Unbounded 3D City Generation](https://github.com/hzxie/GaussianCity) (CVPR 2025).**
|
14 |
|
15 |
- 🔥 GaussianCity is a unbounded 3D city generator based on 3D Gaussian Splatting.
|
app.py
CHANGED
@@ -197,9 +197,9 @@ def main(debug):
|
|
197 |
app = gr.Interface(
|
198 |
get_generated_city,
|
199 |
[
|
200 |
-
gr.Slider(256,
|
201 |
-
gr.Slider(256,
|
202 |
-
gr.Slider(0, 360, value=
|
203 |
gr.Slider(1024, 7168, value=3570, step=4, label="Map Center (px)"),
|
204 |
],
|
205 |
[gr.Image(type="numpy", label="Generated City")],
|
|
|
197 |
app = gr.Interface(
|
198 |
get_generated_city,
|
199 |
[
|
200 |
+
gr.Slider(256, 960, value=768, step=4, label="Camera Radius (m)"),
|
201 |
+
gr.Slider(256, 960, value=768, step=4, label="Camera Altitude (m)"),
|
202 |
+
gr.Slider(0, 360, value=210, step=5, label="Camera Azimuth (°)"),
|
203 |
gr.Slider(1024, 7168, value=3570, step=4, label="Map Center (px)"),
|
204 |
],
|
205 |
[gr.Image(type="numpy", label="Generated City")],
|
gaussiancity/generator.py
CHANGED
@@ -89,7 +89,7 @@ class Generator(torch.nn.Module):
|
|
89 |
)
|
90 |
elif self.cfg.ENCODER is None:
|
91 |
pt_feat = torch.empty(
|
92 |
-
rel_xyz.size(0), rel_xyz.size(1), 0, device=
|
93 |
)
|
94 |
|
95 |
# print(pt_feat.size()) # torch.Size([B, n_pts, cfg.ENCODER_OUT_DIM - 3])
|
|
|
89 |
)
|
90 |
elif self.cfg.ENCODER is None:
|
91 |
pt_feat = torch.empty(
|
92 |
+
rel_xyz.size(0), rel_xyz.size(1), 0, device=rel_xyz.device
|
93 |
)
|
94 |
|
95 |
# print(pt_feat.size()) # torch.Size([B, n_pts, cfg.ENCODER_OUT_DIM - 3])
|