YulianSa's picture
init
829e08b
from math import ceil
from pathlib import Path
import os
import re
from beartype.typing import Tuple
from einops import rearrange, repeat
from toolz import valmap
import torch
from torch import Tensor
from torch.nn import Module
import torch.nn.functional as F
import yaml
from .typing import typecheck
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def path_mkdir(path):
path = Path(path)
path.mkdir(parents=True, exist_ok=True)
return path
def load_yaml(path, default_path=None):
path = path_exists(path)
with open(path, mode='r') as fp:
cfg_s = yaml.load(fp, Loader=yaml.FullLoader)
if default_path is not None:
default_path = path_exists(default_path)
with open(default_path, mode='r') as fp:
cfg = yaml.load(fp, Loader=yaml.FullLoader)
else:
# try current dir default
default_path = path.parent / 'default.yml'
if default_path.exists():
with open(default_path, mode='r') as fp:
cfg = yaml.load(fp, Loader=yaml.FullLoader)
else:
cfg = {}
update_recursive(cfg, cfg_s)
return cfg
def dump_yaml(cfg, path):
with open(path, mode='w') as f:
return yaml.safe_dump(cfg, f)
def update_recursive(dict1, dict2):
''' Update two config dictionaries recursively.
Args:
dict1 (dict): first dictionary to be updated
dict2 (dict): second dictionary which entries should be used
'''
for k, v in dict2.items():
if k not in dict1:
dict1[k] = dict()
if isinstance(v, dict):
update_recursive(dict1[k], v)
else:
dict1[k] = v
def load_latest_checkpoint(checkpoint_dir):
pattern = re.compile(rf".+\.ckpt\.(\d+)\.pt")
max_epoch = -1
latest_checkpoint = None
for filename in os.listdir(checkpoint_dir):
match = pattern.match(filename)
if match:
num_epoch = int(match.group(1))
if num_epoch > max_epoch:
max_epoch = num_epoch
latest_checkpoint = checkpoint_dir / filename
if not exists(latest_checkpoint):
raise FileNotFoundError(f"No checkpoint files found in {checkpoint_dir}")
checkpoint = torch.load(latest_checkpoint)
return checkpoint, latest_checkpoint
def torch_to(inp, device, non_blocking=False):
nb = non_blocking # set to True when doing distributed jobs
if isinstance(inp, torch.Tensor):
return inp.to(device, non_blocking=nb)
elif isinstance(inp, (list, tuple)):
return type(inp)(map(lambda t: t.to(device, non_blocking=nb) if isinstance(t, torch.Tensor) else t, inp))
elif isinstance(inp, dict):
return valmap(lambda t: t.to(device, non_blocking=nb) if isinstance(t, torch.Tensor) else t, inp)
else:
raise NotImplementedError
# helper functions
def exists(v):
return v is not None
def default(v, d):
return v if exists(v) else d
def first(it):
return it[0]
def identity(t, *args, **kwargs):
return t
def divisible_by(num, den):
return (num % den) == 0
def is_odd(n):
return not divisible_by(n, 2)
def is_empty(x):
return len(x) == 0
def is_tensor_empty(t: Tensor):
return t.numel() == 0
def set_module_requires_grad_(
module: Module,
requires_grad: bool
):
for param in module.parameters():
param.requires_grad = requires_grad
def l1norm(t):
return F.normalize(t, dim = -1, p = 1)
def l2norm(t):
return F.normalize(t, dim = -1, p = 2)
def safe_cat(tensors, dim):
tensors = [*filter(exists, tensors)]
if len(tensors) == 0:
return None
elif len(tensors) == 1:
return first(tensors)
return torch.cat(tensors, dim = dim)
def pad_at_dim(t, padding, dim = -1, value = 0):
ndim = t.ndim
right_dims = (ndim - dim - 1) if dim >= 0 else (-dim - 1)
zeros = (0, 0) * right_dims
return F.pad(t, (*zeros, *padding), value = value)
def pad_to_length(t, length, dim = -1, value = 0, right = True):
curr_length = t.shape[dim]
remainder = length - curr_length
if remainder <= 0:
return t
padding = (0, remainder) if right else (remainder, 0)
return pad_at_dim(t, padding, dim = dim, value = value)
def masked_mean(tensor, mask, dim = -1, eps = 1e-5):
if not exists(mask):
return tensor.mean(dim = dim)
mask = rearrange(mask, '... -> ... 1')
tensor = tensor.masked_fill(~mask, 0.)
total_el = mask.sum(dim = dim)
num = tensor.sum(dim = dim)
den = total_el.float().clamp(min = eps)
mean = num / den
mean = mean.masked_fill(total_el == 0, 0.)
return mean
def cycle(dl):
while True:
for data in dl:
yield data
def maybe_del(d: dict, *keys):
for key in keys:
if key not in d:
continue
del d[key]
# tensor helper functions
@typecheck
def discretize(
t: Tensor,
*,
continuous_range: Tuple[float, float],
num_discrete: int = 128
) -> Tensor:
lo, hi = continuous_range
assert hi > lo
t = (t - lo) / (hi - lo)
t *= num_discrete
t -= 0.5
return t.round().long().clamp(min = 0, max = num_discrete - 1)
@typecheck
def undiscretize(
t: Tensor,
*,
continuous_range = Tuple[float, float],
num_discrete: int = 128
) -> Tensor:
lo, hi = continuous_range
assert hi > lo
t = t.float()
t += 0.5
t /= num_discrete
return t * (hi - lo) + lo
@typecheck
def gaussian_blur_1d(
t: Tensor,
*,
sigma: float = 1.,
kernel_size: int = 5
) -> Tensor:
_, _, channels, device, dtype = *t.shape, t.device, t.dtype
width = int(ceil(sigma * kernel_size))
width += (width + 1) % 2
half_width = width // 2
distance = torch.arange(-half_width, half_width + 1, dtype = dtype, device = device)
gaussian = torch.exp(-(distance ** 2) / (2 * sigma ** 2))
gaussian = l1norm(gaussian)
kernel = repeat(gaussian, 'n -> c 1 n', c = channels)
t = rearrange(t, 'b n c -> b c n')
out = F.conv1d(t, kernel, padding = half_width, groups = channels)
return rearrange(out, 'b c n -> b n c')
@typecheck
def scatter_mean(
tgt: Tensor,
indices: Tensor,
src = Tensor,
*,
dim: int = -1,
eps: float = 1e-5
):
"""
todo: update to pytorch 2.1 and try https://pytorch.org/docs/stable/generated/torch.Tensor.scatter_reduce_.html#torch.Tensor.scatter_reduce_
"""
num = tgt.scatter_add(dim, indices, src)
den = torch.zeros_like(tgt).scatter_add(dim, indices, torch.ones_like(src))
return num / den.clamp(min = eps)
def prob_mask_like(shape, prob, device):
if prob == 1:
return torch.ones(shape, device = device, dtype = torch.bool)
elif prob == 0:
return torch.zeros(shape, device = device, dtype = torch.bool)
else:
return torch.zeros(shape, device = device).float().uniform_(0, 1) < prob