PrimitiveAnything / primitive_anything /primitive_transformer.py
YulianSa's picture
update
24a8803
from __future__ import annotations
from functools import partial
from math import ceil
import os
from accelerate.utils import DistributedDataParallelKwargs
from beartype.typing import Tuple, Callable, List
from einops import rearrange, repeat, reduce, pack
from gateloop_transformer import SimpleGateLoopLayer
from huggingface_hub import PyTorchModelHubMixin
import numpy as np
import trimesh
from tqdm import tqdm
import torch
from torch import nn, Tensor
from torch.nn import Module, ModuleList
import torch.nn.functional as F
from pytorch3d.loss import chamfer_distance
from pytorch3d.transforms import euler_angles_to_matrix
from x_transformers import Decoder
from x_transformers.x_transformers import LayerIntermediates
from x_transformers.autoregressive_wrapper import eval_decorator
from .michelangelo import ShapeConditioner as ShapeConditioner_miche
from .utils import (
discretize,
undiscretize,
set_module_requires_grad_,
default,
exists,
safe_cat,
identity,
is_tensor_empty,
)
from .utils.typing import Float, Int, Bool, typecheck
# constants
DEFAULT_DDP_KWARGS = DistributedDataParallelKwargs(
find_unused_parameters = True
)
SHAPE_CODE = {
'CubeBevel': 0,
'SphereSharp': 1,
'CylinderSharp': 2,
}
BS_NAME = {
0: 'CubeBevel',
1: 'SphereSharp',
2: 'CylinderSharp',
}
# FiLM block
class FiLM(Module):
def __init__(self, dim, dim_out = None):
super().__init__()
dim_out = default(dim_out, dim)
self.to_gamma = nn.Linear(dim, dim_out, bias = False)
self.to_beta = nn.Linear(dim, dim_out)
self.gamma_mult = nn.Parameter(torch.zeros(1,))
self.beta_mult = nn.Parameter(torch.zeros(1,))
def forward(self, x, cond):
gamma, beta = self.to_gamma(cond), self.to_beta(cond)
gamma, beta = tuple(rearrange(t, 'b d -> b 1 d') for t in (gamma, beta))
# for initializing to identity
gamma = (1 + self.gamma_mult * gamma.tanh())
beta = beta.tanh() * self.beta_mult
# classic film
return x * gamma + beta
# gateloop layers
class GateLoopBlock(Module):
def __init__(
self,
dim,
*,
depth,
use_heinsen = True
):
super().__init__()
self.gateloops = ModuleList([])
for _ in range(depth):
gateloop = SimpleGateLoopLayer(dim = dim, use_heinsen = use_heinsen)
self.gateloops.append(gateloop)
def forward(
self,
x,
cache = None
):
received_cache = exists(cache)
if is_tensor_empty(x):
return x, None
if received_cache:
prev, x = x[:, :-1], x[:, -1:]
cache = default(cache, [])
cache = iter(cache)
new_caches = []
for gateloop in self.gateloops:
layer_cache = next(cache, None)
out, new_cache = gateloop(x, cache = layer_cache, return_cache = True)
new_caches.append(new_cache)
x = x + out
if received_cache:
x = torch.cat((prev, x), dim = -2)
return x, new_caches
def top_k_2(logits, frac_num_tokens=0.1, k=None):
num_tokens = logits.shape[-1]
k = default(k, ceil(frac_num_tokens * num_tokens))
k = min(k, num_tokens)
val, ind = torch.topk(logits, k)
probs = torch.full_like(logits, float('-inf'))
probs.scatter_(2, ind, val)
return probs
def soft_argmax(labels):
indices = torch.arange(labels.size(-1), dtype=labels.dtype, device=labels.device)
soft_argmax = torch.sum(labels * indices, dim=-1)
return soft_argmax
class PrimitiveTransformerDiscrete(Module, PyTorchModelHubMixin):
@typecheck
def __init__(
self,
*,
num_discrete_scale = 128,
continuous_range_scale: List[float, float] = [0, 1],
dim_scale_embed = 64,
num_discrete_rotation = 180,
continuous_range_rotation: List[float, float] = [-180, 180],
dim_rotation_embed = 64,
num_discrete_translation = 128,
continuous_range_translation: List[float, float] = [-1, 1],
dim_translation_embed = 64,
num_type = 3,
dim_type_embed = 64,
embed_order = 'ctrs',
bin_smooth_blur_sigma = 0.4,
dim: int | Tuple[int, int] = 512,
flash_attn = True,
attn_depth = 12,
attn_dim_head = 64,
attn_heads = 16,
attn_kwargs: dict = dict(
ff_glu = True,
attn_num_mem_kv = 4
),
max_primitive_len = 144,
dropout = 0.,
coarse_pre_gateloop_depth = 2,
coarse_post_gateloop_depth = 0,
coarse_adaptive_rmsnorm = False,
gateloop_use_heinsen = False,
pad_id = -1,
num_sos_tokens = None,
condition_on_shape = True,
shape_cond_with_cross_attn = False,
shape_cond_with_film = False,
shape_cond_with_cat = False,
shape_condition_model_type = 'michelangelo',
shape_condition_len = 1,
shape_condition_dim = None,
cross_attn_num_mem_kv = 4, # needed for preventing nan when dropping out shape condition
loss_weight: dict = dict(
eos = 1.0,
type = 1.0,
scale = 1.0,
rotation = 1.0,
translation = 1.0,
reconstruction = 1.0,
scale_huber = 1.0,
rotation_huber = 1.0,
translation_huber = 1.0,
),
bs_pc_dir=None,
):
super().__init__()
# feature embedding
self.num_discrete_scale = num_discrete_scale
self.continuous_range_scale = continuous_range_scale
self.discretize_scale = partial(discretize, num_discrete=num_discrete_scale, continuous_range=continuous_range_scale)
self.undiscretize_scale = partial(undiscretize, num_discrete=num_discrete_scale, continuous_range=continuous_range_scale)
self.scale_embed = nn.Embedding(num_discrete_scale, dim_scale_embed)
self.num_discrete_rotation = num_discrete_rotation
self.continuous_range_rotation = continuous_range_rotation
self.discretize_rotation = partial(discretize, num_discrete=num_discrete_rotation, continuous_range=continuous_range_rotation)
self.undiscretize_rotation = partial(undiscretize, num_discrete=num_discrete_rotation, continuous_range=continuous_range_rotation)
self.rotation_embed = nn.Embedding(num_discrete_rotation, dim_rotation_embed)
self.num_discrete_translation = num_discrete_translation
self.continuous_range_translation = continuous_range_translation
self.discretize_translation = partial(discretize, num_discrete=num_discrete_translation, continuous_range=continuous_range_translation)
self.undiscretize_translation = partial(undiscretize, num_discrete=num_discrete_translation, continuous_range=continuous_range_translation)
self.translation_embed = nn.Embedding(num_discrete_translation, dim_translation_embed)
self.num_type = num_type
self.type_embed = nn.Embedding(num_type, dim_type_embed)
self.embed_order = embed_order
self.bin_smooth_blur_sigma = bin_smooth_blur_sigma
# initial dimension
self.dim = dim
init_dim = 3 * (dim_scale_embed + dim_rotation_embed + dim_translation_embed) + dim_type_embed
# project into model dimension
self.project_in = nn.Linear(init_dim, dim)
num_sos_tokens = default(num_sos_tokens, 1 if not condition_on_shape or not shape_cond_with_film else 4)
assert num_sos_tokens > 0
self.num_sos_tokens = num_sos_tokens
self.sos_token = nn.Parameter(torch.randn(num_sos_tokens, dim))
# the transformer eos token
self.eos_token = nn.Parameter(torch.randn(1, dim))
self.emb_layernorm = nn.LayerNorm(dim)
self.max_seq_len = max_primitive_len
# shape condition
self.condition_on_shape = condition_on_shape
self.shape_cond_with_cross_attn = False
self.shape_cond_with_cat = False
self.shape_condition_model_type = ''
self.conditioner = None
dim_shape = None
if condition_on_shape:
assert shape_cond_with_cross_attn or shape_cond_with_film or shape_cond_with_cat
self.shape_cond_with_cross_attn = shape_cond_with_cross_attn
self.shape_cond_with_cat = shape_cond_with_cat
self.shape_condition_model_type = shape_condition_model_type
if 'michelangelo' in shape_condition_model_type:
self.conditioner = ShapeConditioner_miche(dim_latent=shape_condition_dim)
self.to_cond_dim = nn.Linear(self.conditioner.dim_model_out * 2, self.conditioner.dim_latent)
self.to_cond_dim_head = nn.Linear(self.conditioner.dim_model_out, self.conditioner.dim_latent)
else:
raise ValueError(f'unknown shape_condition_model_type {self.shape_condition_model_type}')
dim_shape = self.conditioner.dim_latent
set_module_requires_grad_(self.conditioner, False)
self.shape_coarse_film_cond = FiLM(dim_shape, dim) if shape_cond_with_film else identity
self.coarse_gateloop_block = GateLoopBlock(dim, depth=coarse_pre_gateloop_depth, use_heinsen=gateloop_use_heinsen) if coarse_pre_gateloop_depth > 0 else None
self.coarse_post_gateloop_block = GateLoopBlock(dim, depth=coarse_post_gateloop_depth, use_heinsen=gateloop_use_heinsen) if coarse_post_gateloop_depth > 0 else None
self.coarse_adaptive_rmsnorm = coarse_adaptive_rmsnorm
self.decoder = Decoder(
dim=dim,
depth=attn_depth,
heads=attn_heads,
attn_dim_head=attn_dim_head,
attn_flash=flash_attn,
attn_dropout=dropout,
ff_dropout=dropout,
use_adaptive_rmsnorm=coarse_adaptive_rmsnorm,
dim_condition=dim_shape,
cross_attend=self.shape_cond_with_cross_attn,
cross_attn_dim_context=dim_shape,
cross_attn_num_mem_kv=cross_attn_num_mem_kv,
**attn_kwargs
)
# to logits
self.to_eos_logits = nn.Sequential(
nn.Linear(dim, dim),
nn.ReLU(),
nn.Linear(dim, 1)
)
self.to_type_logits = nn.Sequential(
nn.Linear(dim, dim),
nn.ReLU(),
nn.Linear(dim, num_type)
)
self.to_translation_logits = nn.Sequential(
nn.Linear(dim + dim_type_embed, dim),
nn.ReLU(),
nn.Linear(dim, 3 * num_discrete_translation)
)
self.to_rotation_logits = nn.Sequential(
nn.Linear(dim + dim_type_embed + 3 * dim_translation_embed, dim),
nn.ReLU(),
nn.Linear(dim, 3 * num_discrete_rotation)
)
self.to_scale_logits = nn.Sequential(
nn.Linear(dim + dim_type_embed + 3 * (dim_translation_embed + dim_rotation_embed), dim),
nn.ReLU(),
nn.Linear(dim, 3 * num_discrete_scale)
)
self.pad_id = pad_id
bs_pc_map = {}
for bs_name, type_code in SHAPE_CODE.items():
pc = trimesh.load(os.path.join(bs_pc_dir, f'SM_GR_BS_{bs_name}_001.ply'))
bs_pc_map[type_code] = torch.from_numpy(np.asarray(pc.vertices)).float()
bs_pc_list = []
for i in range(len(bs_pc_map)):
bs_pc_list.append(bs_pc_map[i])
self.bs_pc = torch.stack(bs_pc_list, dim=0)
self.rotation_matrix_align_coord = euler_angles_to_matrix(
torch.Tensor([np.pi/2, 0, 0]), 'XYZ').unsqueeze(0).unsqueeze(0)
@property
def device(self):
return next(self.parameters()).device
@typecheck
@torch.no_grad()
def embed_pc(self, pc: Tensor):
if 'michelangelo' in self.shape_condition_model_type:
pc_head, pc_embed = self.conditioner(shape=pc)
pc_embed = torch.cat([self.to_cond_dim_head(pc_head), self.to_cond_dim(pc_embed)], dim=-2).detach()
else:
raise ValueError(f'unknown shape_condition_model_type {self.shape_condition_model_type}')
return pc_embed
@typecheck
def recon_primitives(
self,
scale_logits: Float['b np 3 nd'],
rotation_logits: Float['b np 3 nd'],
translation_logits: Float['b np 3 nd'],
type_logits: Int['b np nd'],
primitive_mask: Bool['b np']
):
recon_scale = self.undiscretize_scale(scale_logits.argmax(dim=-1))
recon_scale = recon_scale.masked_fill(~primitive_mask.unsqueeze(-1), float('nan'))
recon_rotation = self.undiscretize_rotation(rotation_logits.argmax(dim=-1))
recon_rotation = recon_rotation.masked_fill(~primitive_mask.unsqueeze(-1), float('nan'))
recon_translation = self.undiscretize_translation(translation_logits.argmax(dim=-1))
recon_translation = recon_translation.masked_fill(~primitive_mask.unsqueeze(-1), float('nan'))
recon_type_code = type_logits.argmax(dim=-1)
recon_type_code = recon_type_code.masked_fill(~primitive_mask, -1)
return {
'scale': recon_scale,
'rotation': recon_rotation,
'translation': recon_translation,
'type_code': recon_type_code
}
@typecheck
def sample_primitives(
self,
scale: Float['b np 3 nd'],
rotation: Float['b np 3 nd'],
translation: Float['b np 3 nd'],
type_code: Int['b np nd'],
next_embed: Float['b 1 nd'],
temperature: float = 1.,
filter_logits_fn: Callable = top_k_2,
filter_kwargs: dict = dict()
):
def sample_func(logits):
if logits.ndim == 4:
enable_squeeze = True
logits = logits.squeeze(1)
else:
enable_squeeze = False
filtered_logits = filter_logits_fn(logits, **filter_kwargs)
if temperature == 0.:
sample = filtered_logits.argmax(dim=-1)
else:
probs = F.softmax(filtered_logits / temperature, dim=-1)
sample = torch.zeros((probs.shape[0], probs.shape[1]), dtype=torch.long, device=probs.device)
for b_i in range(probs.shape[0]):
sample[b_i] = torch.multinomial(probs[b_i], 1).squeeze()
if enable_squeeze:
sample = sample.unsqueeze(1)
return sample
next_type_logits = self.to_type_logits(next_embed)
next_type_code = sample_func(next_type_logits)
type_code_new, _ = pack([type_code, next_type_code], 'b *')
type_embed = self.type_embed(next_type_code)
next_embed_packed, _ = pack([next_embed, type_embed], 'b np *')
next_translation_logits = rearrange(self.to_translation_logits(next_embed_packed), 'b np (c nd) -> b np c nd', nd=self.num_discrete_translation)
next_discretize_translation = sample_func(next_translation_logits)
next_translation = self.undiscretize_translation(next_discretize_translation)
translation_new, _ = pack([translation, next_translation], 'b * nd')
next_translation_embed = self.translation_embed(next_discretize_translation)
next_embed_packed, _ = pack([next_embed_packed, next_translation_embed], 'b np *')
next_rotation_logits = rearrange(self.to_rotation_logits(next_embed_packed), 'b np (c nd) -> b np c nd', nd=self.num_discrete_rotation)
next_discretize_rotation = sample_func(next_rotation_logits)
next_rotation = self.undiscretize_rotation(next_discretize_rotation)
rotation_new, _ = pack([rotation, next_rotation], 'b * nd')
next_rotation_embed = self.rotation_embed(next_discretize_rotation)
next_embed_packed, _ = pack([next_embed_packed, next_rotation_embed], 'b np *')
next_scale_logits = rearrange(self.to_scale_logits(next_embed_packed), 'b np (c nd) -> b np c nd', nd=self.num_discrete_scale)
next_discretize_scale = sample_func(next_scale_logits)
next_scale = self.undiscretize_scale(next_discretize_scale)
scale_new, _ = pack([scale, next_scale], 'b * nd')
return (
scale_new,
rotation_new,
translation_new,
type_code_new
)
@eval_decorator
@torch.no_grad()
@typecheck
def generate(
self,
batch_size: int | None = None,
filter_logits_fn: Callable = top_k_2,
filter_kwargs: dict = dict(),
temperature: float = 1.,
scale: Float['b np 3'] | None = None,
rotation: Float['b np 3'] | None = None,
translation: Float['b np 3'] | None = None,
type_code: Int['b np'] | None = None,
pc: Tensor | None = None,
pc_embed: Tensor | None = None,
cache_kv = True,
max_seq_len = None,
):
max_seq_len = default(max_seq_len, self.max_seq_len)
if exists(scale) and exists(rotation) and exists(translation) and exists(type_code):
assert not exists(batch_size)
assert scale.shape[1] == rotation.shape[1] == translation.shape[1] == type_code.shape[1]
assert scale.shape[1] <= self.max_seq_len
batch_size = scale.shape[0]
if self.condition_on_shape:
assert exists(pc) ^ exists(pc_embed), '`pc` or `pc_embed` must be passed in'
if exists(pc):
pc_embed = self.embed_pc(pc)
batch_size = default(batch_size, pc_embed.shape[0])
batch_size = default(batch_size, 1)
scale = default(scale, torch.empty((batch_size, 0, 3), dtype=torch.float64, device=self.device))
rotation = default(rotation, torch.empty((batch_size, 0, 3), dtype=torch.float64, device=self.device))
translation = default(translation, torch.empty((batch_size, 0, 3), dtype=torch.float64, device=self.device))
type_code = default(type_code, torch.empty((batch_size, 0), dtype=torch.int64, device=self.device))
curr_length = scale.shape[1]
cache = None
eos_codes = None
for i in tqdm(range(curr_length, max_seq_len)):
can_eos = i != 0
output = self.forward(
scale=scale,
rotation=rotation,
translation=translation,
type_code=type_code,
pc_embed=pc_embed,
return_loss=False,
return_cache=cache_kv,
append_eos=False,
cache=cache
)
if cache_kv:
next_embed, cache = output
else:
next_embed = output
(
scale,
rotation,
translation,
type_code
) = self.sample_primitives(
scale,
rotation,
translation,
type_code,
next_embed,
temperature=temperature,
filter_logits_fn=filter_logits_fn,
filter_kwargs=filter_kwargs
)
next_eos_logits = self.to_eos_logits(next_embed).squeeze(-1)
next_eos_code = (F.sigmoid(next_eos_logits) > 0.5)
eos_codes = safe_cat([eos_codes, next_eos_code], 1)
if can_eos and eos_codes.any(dim=-1).all():
break
# mask out to padding anything after the first eos
mask = eos_codes.float().cumsum(dim=-1) >= 1
# concat cur_length to mask
mask = torch.cat((torch.zeros((batch_size, curr_length), dtype=torch.bool, device=self.device), mask), dim=-1)
type_code = type_code.masked_fill(mask, self.pad_id)
scale = scale.masked_fill(mask.unsqueeze(-1), self.pad_id)
rotation = rotation.masked_fill(mask.unsqueeze(-1), self.pad_id)
translation = translation.masked_fill(mask.unsqueeze(-1), self.pad_id)
recon_primitives = {
'scale': scale,
'rotation': rotation,
'translation': translation,
'type_code': type_code
}
primitive_mask = ~eos_codes
return recon_primitives, primitive_mask
@eval_decorator
@torch.no_grad()
@typecheck
def generate_w_recon_loss(
self,
batch_size: int | None = None,
filter_logits_fn: Callable = top_k_2,
filter_kwargs: dict = dict(),
temperature: float = 1.,
scale: Float['b np 3'] | None = None,
rotation: Float['b np 3'] | None = None,
translation: Float['b np 3'] | None = None,
type_code: Int['b np'] | None = None,
pc: Tensor | None = None,
pc_embed: Tensor | None = None,
cache_kv = True,
max_seq_len = None,
single_directional = True,
):
max_seq_len = default(max_seq_len, self.max_seq_len)
if exists(scale) and exists(rotation) and exists(translation) and exists(type_code):
assert not exists(batch_size)
assert scale.shape[1] == rotation.shape[1] == translation.shape[1] == type_code.shape[1]
assert scale.shape[1] <= self.max_seq_len
batch_size = scale.shape[0]
if self.condition_on_shape:
assert exists(pc) ^ exists(pc_embed), '`pc` or `pc_embed` must be passed in'
if exists(pc):
pc_embed = self.embed_pc(pc)
batch_size = default(batch_size, pc_embed.shape[0])
batch_size = default(batch_size, 1)
assert batch_size == 1 # TODO: support any batch size
scale = default(scale, torch.empty((batch_size, 0, 3), dtype=torch.float32, device=self.device))
rotation = default(rotation, torch.empty((batch_size, 0, 3), dtype=torch.float32, device=self.device))
translation = default(translation, torch.empty((batch_size, 0, 3), dtype=torch.float32, device=self.device))
type_code = default(type_code, torch.empty((batch_size, 0), dtype=torch.int64, device=self.device))
curr_length = scale.shape[1]
cache = None
eos_codes = None
last_recon_loss = 1
for i in tqdm(range(curr_length, max_seq_len)):
can_eos = i != 0
output = self.forward(
scale=scale,
rotation=rotation,
translation=translation,
type_code=type_code,
pc_embed=pc_embed,
return_loss=False,
return_cache=cache_kv,
append_eos=False,
cache=cache
)
if cache_kv:
next_embed, cache = output
else:
next_embed = output
(
scale_new,
rotation_new,
translation_new,
type_code_new
) = self.sample_primitives(
scale,
rotation,
translation,
type_code,
next_embed,
temperature=temperature,
filter_logits_fn=filter_logits_fn,
filter_kwargs=filter_kwargs
)
next_eos_logits = self.to_eos_logits(next_embed).squeeze(-1)
next_eos_code = (F.sigmoid(next_eos_logits) > 0.5)
eos_codes = safe_cat([eos_codes, next_eos_code], 1)
if can_eos and eos_codes.any(dim=-1).all():
scale, rotation, translation, type_code = (
scale_new, rotation_new, translation_new, type_code_new)
break
recon_loss = self.compute_chamfer_distance(scale_new, rotation_new, translation_new, type_code_new, ~eos_codes, pc, single_directional)
if recon_loss < last_recon_loss:
last_recon_loss = recon_loss
scale, rotation, translation, type_code = (
scale_new, rotation_new, translation_new, type_code_new)
else:
best_recon_loss = recon_loss
best_primitives = dict(
scale=scale_new, rotation=rotation_new, translation=translation_new, type_code=type_code_new)
success_flag = False
print(f'last_recon_loss:{last_recon_loss}, recon_loss:{recon_loss} -> to find better primitive')
for try_i in range(5):
(
scale_new,
rotation_new,
translation_new,
type_code_new
) = self.sample_primitives(
scale,
rotation,
translation,
type_code,
next_embed,
temperature=1.0,
filter_logits_fn=filter_logits_fn,
filter_kwargs=filter_kwargs
)
recon_loss = self.compute_chamfer_distance(scale_new, rotation_new, translation_new, type_code_new, ~eos_codes, pc)
print(f'[try_{try_i}] last_recon_loss:{last_recon_loss}, best_recon_loss:{best_recon_loss}, cur_recon_loss:{recon_loss}')
if recon_loss < last_recon_loss:
last_recon_loss = recon_loss
scale, rotation, translation, type_code = (
scale_new, rotation_new, translation_new, type_code_new)
success_flag = True
break
else:
if recon_loss < best_recon_loss:
best_recon_loss = recon_loss
best_primitives = dict(
scale=scale_new, rotation=rotation_new, translation=translation_new, type_code=type_code_new)
if not success_flag:
last_recon_loss = best_recon_loss
scale, rotation, translation, type_code = (
best_primitives['scale'], best_primitives['rotation'], best_primitives['translation'], best_primitives['type_code'])
print(f'new_last_recon_loss:{last_recon_loss}')
# mask out to padding anything after the first eos
mask = eos_codes.float().cumsum(dim=-1) >= 1
type_code = type_code.masked_fill(mask, self.pad_id)
scale = scale.masked_fill(mask.unsqueeze(-1), self.pad_id)
rotation = rotation.masked_fill(mask.unsqueeze(-1), self.pad_id)
translation = translation.masked_fill(mask.unsqueeze(-1), self.pad_id)
recon_primitives = {
'scale': scale,
'rotation': rotation,
'translation': translation,
'type_code': type_code
}
primitive_mask = ~eos_codes
return recon_primitives, primitive_mask
@typecheck
def encode(
self,
*,
scale: Float['b np 3'],
rotation: Float['b np 3'],
translation: Float['b np 3'],
type_code: Int['b np'],
primitive_mask: Bool['b np'],
return_primitives = False
):
"""
einops:
b - batch
np - number of primitives
c - coordinates (3)
d - embed dim
"""
# compute feature embedding
discretize_scale = self.discretize_scale(scale)
scale_embed = self.scale_embed(discretize_scale)
scale_embed = rearrange(scale_embed, 'b np c d -> b np (c d)')
discretize_rotation = self.discretize_rotation(rotation)
rotation_embed = self.rotation_embed(discretize_rotation)
rotation_embed = rearrange(rotation_embed, 'b np c d -> b np (c d)')
discretize_translation = self.discretize_translation(translation)
translation_embed = self.translation_embed(discretize_translation)
translation_embed = rearrange(translation_embed, 'b np c d -> b np (c d)')
type_embed = self.type_embed(type_code.masked_fill(~primitive_mask, 0))
# combine all features and project into model dimension
if self.embed_order == 'srtc':
primitive_embed, _ = pack([scale_embed, rotation_embed, translation_embed, type_embed], 'b np *')
else:
primitive_embed, _ = pack([type_embed, translation_embed, rotation_embed, scale_embed], 'b np *')
primitive_embed = self.project_in(primitive_embed)
primitive_embed = primitive_embed.masked_fill(~primitive_mask.unsqueeze(-1), 0.)
if not return_primitives:
return primitive_embed
primitive_embed_unpacked = {
'scale': scale_embed,
'rotation': rotation_embed,
'translation': translation_embed,
'type_code': type_embed
}
primitives_gt = {
'scale': discretize_scale,
'rotation': discretize_rotation,
'translation': discretize_translation,
'type_code': type_code
}
return primitive_embed, primitive_embed_unpacked, primitives_gt
@typecheck
def compute_chamfer_distance(
self,
scale_pred: Float['b np 3'],
rotation_pred: Float['b np 3'],
translation_pred: Float['b np 3'],
type_pred: Int['b np'],
primitive_mask: Bool['b np'],
pc: Tensor, # b, num_points, c
single_directional = True
):
scale_pred = scale_pred.float()
rotation_pred = rotation_pred.float()
translation_pred = translation_pred.float()
pc_pred = apply_transformation(self.bs_pc.to(type_pred.device)[type_pred], scale_pred, torch.deg2rad(rotation_pred), translation_pred)
pc_pred = torch.matmul(pc_pred, self.rotation_matrix_align_coord.to(type_pred.device))
pc_pred_flat = rearrange(pc_pred, 'b np p c -> b (np p) c')
pc_pred_sampled = random_sample_pc(pc_pred_flat, primitive_mask.sum(dim=-1, keepdim=True), n_points=self.bs_pc.shape[1])
if single_directional:
recon_loss, _ = chamfer_distance(pc[:, :, :3].float(), pc_pred_sampled.float(), single_directional=True) # single directional
else:
recon_loss, _ = chamfer_distance(pc_pred_sampled.float(), pc[:, :, :3].float())
return recon_loss
def forward(
self,
*,
scale: Float['b np 3'],
rotation: Float['b np 3'],
translation: Float['b np 3'],
type_code: Int['b np'],
loss_reduction: str = 'mean',
return_cache = False,
append_eos = True,
cache: LayerIntermediates | None = None,
pc: Tensor | None = None,
pc_embed: Tensor | None = None,
**kwargs
):
primitive_mask = reduce(scale != self.pad_id, 'b np 3 -> b np', 'all')
if scale.shape[1] > 0:
codes, primitives_embeds, primitives_gt = self.encode(
scale=scale,
rotation=rotation,
translation=translation,
type_code=type_code,
primitive_mask=primitive_mask,
return_primitives=True
)
else:
codes = torch.empty((scale.shape[0], 0, self.dim), dtype=torch.float32, device=self.device)
# handle shape conditions
attn_context_kwargs = dict()
if self.condition_on_shape:
assert exists(pc) ^ exists(pc_embed), '`pc` or `pc_embed` must be passed in'
if exists(pc):
if 'michelangelo' in self.shape_condition_model_type:
pc_head, pc_embed = self.conditioner(shape=pc)
pc_embed = torch.cat([self.to_cond_dim_head(pc_head), self.to_cond_dim(pc_embed)], dim=-2)
else:
raise ValueError(f'unknown shape_condition_model_type {self.shape_condition_model_type}')
assert pc_embed.shape[0] == codes.shape[0], 'batch size of point cloud is not equal to the batch size of the primitive codes'
pooled_pc_embed = pc_embed.mean(dim=1) # (b, shape_condition_dim)
if self.shape_cond_with_cross_attn:
attn_context_kwargs = dict(
context=pc_embed
)
if self.coarse_adaptive_rmsnorm:
attn_context_kwargs.update(
condition=pooled_pc_embed
)
batch, seq_len, _ = codes.shape # (b, np, dim)
device = codes.device
assert seq_len <= self.max_seq_len, f'received codes of length {seq_len} but needs to be less than or equal to set max_seq_len {self.max_seq_len}'
if append_eos:
assert exists(codes)
code_lens = primitive_mask.sum(dim=-1)
codes = pad_tensor(codes)
batch_arange = torch.arange(batch, device=device)
batch_arange = rearrange(batch_arange, '... -> ... 1')
code_lens = rearrange(code_lens, '... -> ... 1')
codes[batch_arange, code_lens] = self.eos_token # (b, np+1, dim)
primitive_codes = codes # (b, np, dim)
primitive_codes_len = primitive_codes.shape[-2]
(
coarse_cache,
coarse_gateloop_cache,
coarse_post_gateloop_cache,
) = cache if exists(cache) else ((None,) * 3)
if not exists(cache):
sos = repeat(self.sos_token, 'n d -> b n d', b=batch)
if self.shape_cond_with_cat:
sos, _ = pack([pc_embed, sos], 'b * d')
primitive_codes, packed_sos_shape = pack([sos, primitive_codes], 'b * d') # (b, n_sos+np, dim)
# condition primitive codes with shape if needed
if self.condition_on_shape:
primitive_codes = self.shape_coarse_film_cond(primitive_codes, pooled_pc_embed)
# attention on primitive codes (coarse)
if exists(self.coarse_gateloop_block):
primitive_codes, coarse_gateloop_cache = self.coarse_gateloop_block(primitive_codes, cache=coarse_gateloop_cache)
attended_primitive_codes, coarse_cache = self.decoder( # (b, n_sos+np, dim)
primitive_codes,
cache=coarse_cache,
return_hiddens=True,
**attn_context_kwargs
)
if exists(self.coarse_post_gateloop_block):
primitive_codes, coarse_post_gateloop_cache = self.coarse_post_gateloop_block(primitive_codes, cache=coarse_post_gateloop_cache)
embed = attended_primitive_codes[:, -(primitive_codes_len + 1):] # (b, np+1, dim)
if not return_cache:
return embed[:, -1:]
next_cache = (
coarse_cache,
coarse_gateloop_cache,
coarse_post_gateloop_cache
)
return embed[:, -1:], next_cache
def pad_tensor(tensor):
if tensor.dim() == 3:
bs, seq_len, dim = tensor.shape
padding = torch.zeros((bs, 1, dim), dtype=tensor.dtype, device=tensor.device)
elif tensor.dim() == 2:
bs, seq_len = tensor.shape
padding = torch.zeros((bs, 1), dtype=tensor.dtype, device=tensor.device)
else:
raise ValueError('Unsupported tensor shape: {}'.format(tensor.shape))
return torch.cat([tensor, padding], dim=1)
def apply_transformation(pc, scale, rotation_vector, translation):
bs, np, num_points, _ = pc.shape
scaled_pc = pc * scale.unsqueeze(2)
rotation_matrix = euler_angles_to_matrix(rotation_vector.view(-1, 3), 'XYZ').view(bs, np, 3, 3) # euler tmp
rotated_pc = torch.einsum('bnij,bnpj->bnpi', rotation_matrix, scaled_pc)
transformed_pc = rotated_pc + translation.unsqueeze(2)
return transformed_pc
def random_sample_pc(pc, max_lens, n_points=10000):
bs = max_lens.shape[0]
max_len = max_lens.max().item() * n_points
random_values = torch.rand(bs, max_len, device=max_lens.device)
mask = torch.arange(max_len).expand(bs, max_len).to(max_lens.device) < (max_lens * n_points)
masked_random_values = random_values * mask.float()
_, indices = torch.topk(masked_random_values, n_points, dim=1)
return pc[torch.arange(bs).unsqueeze(1), indices]