Spaces:
Runtime error
Runtime error
"""This script contains basic utilities for Deep3DFaceRecon_pytorch | |
""" | |
from __future__ import print_function | |
import argparse | |
import importlib | |
import os | |
from argparse import Namespace | |
import numpy as np | |
import torch | |
import torchvision | |
from PIL import Image | |
def str2bool(v): | |
if isinstance(v, bool): | |
return v | |
if v.lower() in ("yes", "true", "t", "y", "1"): | |
return True | |
elif v.lower() in ("no", "false", "f", "n", "0"): | |
return False | |
else: | |
raise argparse.ArgumentTypeError("Boolean value expected.") | |
def copyconf(default_opt, **kwargs): | |
conf = Namespace(**vars(default_opt)) | |
for key in kwargs: | |
setattr(conf, key, kwargs[key]) | |
return conf | |
def genvalconf(train_opt, **kwargs): | |
conf = Namespace(**vars(train_opt)) | |
attr_dict = train_opt.__dict__ | |
for key, value in attr_dict.items(): | |
if "val" in key and key.split("_")[0] in attr_dict: | |
setattr(conf, key.split("_")[0], value) | |
for key in kwargs: | |
setattr(conf, key, kwargs[key]) | |
return conf | |
def find_class_in_module(target_cls_name, module): | |
target_cls_name = target_cls_name.replace("_", "").lower() | |
clslib = importlib.import_module(module) | |
cls = None | |
for name, clsobj in clslib.__dict__.items(): | |
if name.lower() == target_cls_name: | |
cls = clsobj | |
assert ( | |
cls is not None | |
), "In %s, there should be a class whose name matches %s in lowercase without underscore(_)" % ( | |
module, | |
target_cls_name, | |
) | |
return cls | |
def tensor2im(input_image, imtype=np.uint8): | |
""" "Converts a Tensor array into a numpy image array. | |
Parameters: | |
input_image (tensor) -- the input image tensor array, range(0, 1) | |
imtype (type) -- the desired type of the converted numpy array | |
""" | |
if not isinstance(input_image, np.ndarray): | |
if isinstance(input_image, torch.Tensor): # get the data from a variable | |
image_tensor = input_image.data | |
else: | |
return input_image | |
image_numpy = image_tensor.clamp(0.0, 1.0).cpu().float().numpy() # convert it into a numpy array | |
if image_numpy.shape[0] == 1: # grayscale to RGB | |
image_numpy = np.tile(image_numpy, (3, 1, 1)) | |
image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0 # post-processing: tranpose and scaling | |
else: # if it is a numpy array, do nothing | |
image_numpy = input_image | |
return image_numpy.astype(imtype) | |
def diagnose_network(net, name="network"): | |
"""Calculate and print the mean of average absolute(gradients) | |
Parameters: | |
net (torch network) -- Torch network | |
name (str) -- the name of the network | |
""" | |
mean = 0.0 | |
count = 0 | |
for param in net.parameters(): | |
if param.grad is not None: | |
mean += torch.mean(torch.abs(param.grad.data)) | |
count += 1 | |
if count > 0: | |
mean = mean / count | |
print(name) | |
print(mean) | |
def save_image(image_numpy, image_path, aspect_ratio=1.0): | |
"""Save a numpy image to the disk | |
Parameters: | |
image_numpy (numpy array) -- input numpy array | |
image_path (str) -- the path of the image | |
""" | |
image_pil = Image.fromarray(image_numpy) | |
h, w, _ = image_numpy.shape | |
if aspect_ratio is None: | |
pass | |
elif aspect_ratio > 1.0: | |
image_pil = image_pil.resize((h, int(w * aspect_ratio)), Image.Resampling.BICUBIC) | |
elif aspect_ratio < 1.0: | |
image_pil = image_pil.resize((int(h / aspect_ratio), w), Image.Resampling.BICUBIC) | |
image_pil.save(image_path) | |
def print_numpy(x, val=True, shp=False): | |
"""Print the mean, min, max, median, std, and size of a numpy array | |
Parameters: | |
val (bool) -- if print the values of the numpy array | |
shp (bool) -- if print the shape of the numpy array | |
""" | |
x = x.astype(np.float64) | |
if shp: | |
print("shape,", x.shape) | |
if val: | |
x = x.flatten() | |
print( | |
"mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f" | |
% (np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x)) | |
) | |
def mkdirs(paths): | |
"""create empty directories if they don't exist | |
Parameters: | |
paths (str list) -- a list of directory paths | |
""" | |
if isinstance(paths, list) and not isinstance(paths, str): | |
for path in paths: | |
mkdir(path) | |
else: | |
mkdir(paths) | |
def mkdir(path): | |
"""create a single empty directory if it didn't exist | |
Parameters: | |
path (str) -- a single directory path | |
""" | |
if not os.path.exists(path): | |
os.makedirs(path) | |
def correct_resize_label(t, size): | |
device = t.device | |
t = t.detach().cpu() | |
resized = [] | |
for i in range(t.size(0)): | |
one_t = t[i, :1] | |
one_np = np.transpose(one_t.numpy().astype(np.uint8), (1, 2, 0)) | |
one_np = one_np[:, :, 0] | |
one_image = Image.fromarray(one_np).resize(size, Image.NEAREST) | |
resized_t = torch.from_numpy(np.array(one_image)).long() | |
resized.append(resized_t) | |
return torch.stack(resized, dim=0).to(device) | |
def correct_resize(t, size, mode=Image.Resampling.BICUBIC): | |
device = t.device | |
t = t.detach().cpu() | |
resized = [] | |
for i in range(t.size(0)): | |
one_t = t[i : i + 1] | |
one_image = Image.fromarray(tensor2im(one_t)).resize(size, Image.Resampling.BICUBIC) | |
resized_t = torchvision.transforms.functional.to_tensor(one_image) * 2 - 1.0 | |
resized.append(resized_t) | |
return torch.stack(resized, dim=0).to(device) | |
def draw_landmarks(img, landmark, color="r", step=2): | |
""" | |
Return: | |
img -- numpy.array, (B, H, W, 3) img with landmark, RGB order, range (0, 255) | |
Parameters: | |
img -- numpy.array, (B, H, W, 3), RGB order, range (0, 255) | |
landmark -- numpy.array, (B, 68, 2), y direction is opposite to v direction | |
color -- str, 'r' or 'b' (red or blue) | |
""" | |
if color == "r": | |
c = np.array([255.0, 0, 0]) | |
else: | |
c = np.array([0, 0, 255.0]) | |
_, H, W, _ = img.shape | |
img, landmark = img.copy(), landmark.copy() | |
landmark[..., 1] = H - 1 - landmark[..., 1] | |
landmark = np.round(landmark).astype(np.int32) | |
for i in range(landmark.shape[1]): | |
x, y = landmark[:, i, 0], landmark[:, i, 1] | |
for j in range(-step, step): | |
for k in range(-step, step): | |
u = np.clip(x + j, 0, W - 1) | |
v = np.clip(y + k, 0, H - 1) | |
for m in range(landmark.shape[0]): | |
img[m, v[m], u[m]] = c | |
return img | |