xuehongyang
ser
83d8d3c
from __future__ import division
from __future__ import print_function
import math
import os
import sys
import cv2
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import torch
from PIL import Image
from scipy import ndimage
from skimage import io
from skimage import transform as ski_transform
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from torchvision import transforms
from torchvision import utils
def _gaussian(
size=3,
sigma=0.25,
amplitude=1,
normalize=False,
width=None,
height=None,
sigma_horz=None,
sigma_vert=None,
mean_horz=0.5,
mean_vert=0.5,
):
# handle some defaults
if width is None:
width = size
if height is None:
height = size
if sigma_horz is None:
sigma_horz = sigma
if sigma_vert is None:
sigma_vert = sigma
center_x = mean_horz * width + 0.5
center_y = mean_vert * height + 0.5
gauss = np.empty((height, width), dtype=np.float32)
# generate kernel
for i in range(height):
for j in range(width):
gauss[i][j] = amplitude * math.exp(
-(
math.pow((j + 1 - center_x) / (sigma_horz * width), 2) / 2.0
+ math.pow((i + 1 - center_y) / (sigma_vert * height), 2) / 2.0
)
)
if normalize:
gauss = gauss / np.sum(gauss)
return gauss
def draw_gaussian(image, point, sigma):
# Check if the gaussian is inside
ul = [np.floor(np.floor(point[0]) - 3 * sigma), np.floor(np.floor(point[1]) - 3 * sigma)]
br = [np.floor(np.floor(point[0]) + 3 * sigma), np.floor(np.floor(point[1]) + 3 * sigma)]
if ul[0] > image.shape[1] or ul[1] > image.shape[0] or br[0] < 1 or br[1] < 1:
return image
size = 6 * sigma + 1
g = _gaussian(size)
g_x = [int(max(1, -ul[0])), int(min(br[0], image.shape[1])) - int(max(1, ul[0])) + int(max(1, -ul[0]))]
g_y = [int(max(1, -ul[1])), int(min(br[1], image.shape[0])) - int(max(1, ul[1])) + int(max(1, -ul[1]))]
img_x = [int(max(1, ul[0])), int(min(br[0], image.shape[1]))]
img_y = [int(max(1, ul[1])), int(min(br[1], image.shape[0]))]
assert g_x[0] > 0 and g_y[1] > 0
correct = False
while not correct:
try:
image[img_y[0] - 1 : img_y[1], img_x[0] - 1 : img_x[1]] = (
image[img_y[0] - 1 : img_y[1], img_x[0] - 1 : img_x[1]] + g[g_y[0] - 1 : g_y[1], g_x[0] - 1 : g_x[1]]
)
correct = True
except:
print(
"img_x: {}, img_y: {}, g_x:{}, g_y:{}, point:{}, g_shape:{}, ul:{}, br:{}".format(
img_x, img_y, g_x, g_y, point, g.shape, ul, br
)
)
ul = [np.floor(np.floor(point[0]) - 3 * sigma), np.floor(np.floor(point[1]) - 3 * sigma)]
br = [np.floor(np.floor(point[0]) + 3 * sigma), np.floor(np.floor(point[1]) + 3 * sigma)]
g_x = [int(max(1, -ul[0])), int(min(br[0], image.shape[1])) - int(max(1, ul[0])) + int(max(1, -ul[0]))]
g_y = [int(max(1, -ul[1])), int(min(br[1], image.shape[0])) - int(max(1, ul[1])) + int(max(1, -ul[1]))]
img_x = [int(max(1, ul[0])), int(min(br[0], image.shape[1]))]
img_y = [int(max(1, ul[1])), int(min(br[1], image.shape[0]))]
pass
image[image > 1] = 1
return image
def transform(point, center, scale, resolution, rotation=0, invert=False):
_pt = np.ones(3)
_pt[0] = point[0]
_pt[1] = point[1]
h = 200.0 * scale
t = np.eye(3)
t[0, 0] = resolution / h
t[1, 1] = resolution / h
t[0, 2] = resolution * (-center[0] / h + 0.5)
t[1, 2] = resolution * (-center[1] / h + 0.5)
if rotation != 0:
rotation = -rotation
r = np.eye(3)
ang = rotation * math.pi / 180.0
s = math.sin(ang)
c = math.cos(ang)
r[0][0] = c
r[0][1] = -s
r[1][0] = s
r[1][1] = c
t_ = np.eye(3)
t_[0][2] = -resolution / 2.0
t_[1][2] = -resolution / 2.0
t_inv = torch.eye(3)
t_inv[0][2] = resolution / 2.0
t_inv[1][2] = resolution / 2.0
t = reduce(np.matmul, [t_inv, r, t_, t])
if invert:
t = np.linalg.inv(t)
new_point = (np.matmul(t, _pt))[0:2]
return new_point.astype(int)
def cv_crop(image, landmarks, center, scale, resolution=256, center_shift=0):
new_image = cv2.copyMakeBorder(
image, center_shift, center_shift, center_shift, center_shift, cv2.BORDER_CONSTANT, value=[0, 0, 0]
)
new_landmarks = landmarks.copy()
if center_shift != 0:
center[0] += center_shift
center[1] += center_shift
new_landmarks = new_landmarks + center_shift
length = 200 * scale
top = int(center[1] - length // 2)
bottom = int(center[1] + length // 2)
left = int(center[0] - length // 2)
right = int(center[0] + length // 2)
y_pad = abs(min(top, new_image.shape[0] - bottom, 0))
x_pad = abs(min(left, new_image.shape[1] - right, 0))
top, bottom, left, right = top + y_pad, bottom + y_pad, left + x_pad, right + x_pad
new_image = cv2.copyMakeBorder(new_image, y_pad, y_pad, x_pad, x_pad, cv2.BORDER_CONSTANT, value=[0, 0, 0])
new_image = new_image[top:bottom, left:right]
new_image = cv2.resize(new_image, dsize=(int(resolution), int(resolution)), interpolation=cv2.INTER_LINEAR)
new_landmarks[:, 0] = (new_landmarks[:, 0] + x_pad - left) * resolution / length
new_landmarks[:, 1] = (new_landmarks[:, 1] + y_pad - top) * resolution / length
return new_image, new_landmarks
def cv_rotate(image, landmarks, heatmap, rot, scale, resolution=256):
img_mat = cv2.getRotationMatrix2D((resolution // 2, resolution // 2), rot, scale)
ones = np.ones(shape=(landmarks.shape[0], 1))
stacked_landmarks = np.hstack([landmarks, ones])
new_landmarks = img_mat.dot(stacked_landmarks.T).T
if np.max(new_landmarks) > 255 or np.min(new_landmarks) < 0:
return image, landmarks, heatmap
else:
new_image = cv2.warpAffine(image, img_mat, (resolution, resolution))
if heatmap is not None:
new_heatmap = np.zeros((heatmap.shape[0], 64, 64))
for i in range(heatmap.shape[0]):
if new_landmarks[i][0] > 0:
new_heatmap[i] = draw_gaussian(new_heatmap[i], new_landmarks[i] / 4.0 + 1, 1)
return new_image, new_landmarks, new_heatmap
def show_landmarks(image, heatmap, gt_landmarks, gt_heatmap):
"""Show image with pred_landmarks"""
pred_landmarks = []
pred_landmarks, _ = get_preds_fromhm(torch.from_numpy(heatmap).unsqueeze(0))
pred_landmarks = pred_landmarks.squeeze() * 4
# pred_landmarks2 = get_preds_fromhm2(heatmap)
heatmap = np.max(gt_heatmap, axis=0)
heatmap = heatmap / np.max(heatmap)
# image = ski_transform.resize(image, (64, 64))*255
image = image.astype(np.uint8)
heatmap = np.max(gt_heatmap, axis=0)
heatmap = ski_transform.resize(heatmap, (image.shape[0], image.shape[1]))
heatmap *= 255
heatmap = heatmap.astype(np.uint8)
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
plt.imshow(image)
plt.scatter(gt_landmarks[:, 0], gt_landmarks[:, 1], s=0.5, marker=".", c="g")
plt.scatter(pred_landmarks[:, 0], pred_landmarks[:, 1], s=0.5, marker=".", c="r")
plt.pause(0.001) # pause a bit so that plots are updated
def fan_NME(pred_heatmaps, gt_landmarks, num_landmarks=68):
"""
Calculate total NME for a batch of data
Args:
pred_heatmaps: torch tensor of size [batch, points, height, width]
gt_landmarks: torch tesnsor of size [batch, points, x, y]
Returns:
nme: sum of nme for this batch
"""
nme = 0
pred_landmarks, _ = get_preds_fromhm(pred_heatmaps)
pred_landmarks = pred_landmarks.numpy()
gt_landmarks = gt_landmarks.numpy()
for i in range(pred_landmarks.shape[0]):
pred_landmark = pred_landmarks[i] * 4.0
gt_landmark = gt_landmarks[i]
if num_landmarks == 68:
left_eye = np.average(gt_landmark[36:42], axis=0)
right_eye = np.average(gt_landmark[42:48], axis=0)
norm_factor = np.linalg.norm(left_eye - right_eye)
# norm_factor = np.linalg.norm(gt_landmark[36]- gt_landmark[45])
elif num_landmarks == 98:
norm_factor = np.linalg.norm(gt_landmark[60] - gt_landmark[72])
elif num_landmarks == 19:
left, top = gt_landmark[-2, :]
right, bottom = gt_landmark[-1, :]
norm_factor = math.sqrt(abs(right - left) * abs(top - bottom))
gt_landmark = gt_landmark[:-2, :]
elif num_landmarks == 29:
# norm_factor = np.linalg.norm(gt_landmark[8]- gt_landmark[9])
norm_factor = np.linalg.norm(gt_landmark[16] - gt_landmark[17])
nme += (np.sum(np.linalg.norm(pred_landmark - gt_landmark, axis=1)) / pred_landmark.shape[0]) / norm_factor
return nme
def fan_NME_hm(pred_heatmaps, gt_heatmaps, num_landmarks=68):
"""
Calculate total NME for a batch of data
Args:
pred_heatmaps: torch tensor of size [batch, points, height, width]
gt_landmarks: torch tesnsor of size [batch, points, x, y]
Returns:
nme: sum of nme for this batch
"""
nme = 0
pred_landmarks, _ = get_index_fromhm(pred_heatmaps)
pred_landmarks = pred_landmarks.numpy()
gt_landmarks = gt_landmarks.numpy()
for i in range(pred_landmarks.shape[0]):
pred_landmark = pred_landmarks[i] * 4.0
gt_landmark = gt_landmarks[i]
if num_landmarks == 68:
left_eye = np.average(gt_landmark[36:42], axis=0)
right_eye = np.average(gt_landmark[42:48], axis=0)
norm_factor = np.linalg.norm(left_eye - right_eye)
else:
norm_factor = np.linalg.norm(gt_landmark[60] - gt_landmark[72])
nme += (np.sum(np.linalg.norm(pred_landmark - gt_landmark, axis=1)) / pred_landmark.shape[0]) / norm_factor
return nme
def power_transform(img, power):
img = np.array(img)
img_new = np.power((img / 255.0), power) * 255.0
img_new = img_new.astype(np.uint8)
img_new = Image.fromarray(img_new)
return img_new
def get_preds_fromhm(hm, center=None, scale=None, rot=None):
max, idx = torch.max(hm.view(hm.size(0), hm.size(1), hm.size(2) * hm.size(3)), 2)
idx += 1
preds = idx.view(idx.size(0), idx.size(1), 1).repeat(1, 1, 2).float()
preds[..., 0].apply_(lambda x: (x - 1) % hm.size(3) + 1)
preds[..., 1].add_(-1).div_(hm.size(2)).floor_().add_(1)
for i in range(preds.size(0)):
for j in range(preds.size(1)):
hm_ = hm[i, j, :]
pX, pY = int(preds[i, j, 0]) - 1, int(preds[i, j, 1]) - 1
if pX > 0 and pX < 63 and pY > 0 and pY < 63:
diff = torch.FloatTensor([hm_[pY, pX + 1] - hm_[pY, pX - 1], hm_[pY + 1, pX] - hm_[pY - 1, pX]])
preds[i, j].add_(diff.sign_().mul_(0.25))
preds.add_(-0.5)
preds_orig = torch.zeros(preds.size())
if center is not None and scale is not None:
for i in range(hm.size(0)):
for j in range(hm.size(1)):
preds_orig[i, j] = transform(preds[i, j], center, scale, hm.size(2), rot, True)
return preds, preds_orig
def get_index_fromhm(hm):
max, idx = torch.max(hm.view(hm.size(0), hm.size(1), hm.size(2) * hm.size(3)), 2)
preds = idx.view(idx.size(0), idx.size(1), 1).repeat(1, 1, 2).float()
preds[..., 0].remainder_(hm.size(3))
preds[..., 1].div_(hm.size(2)).floor_()
for i in range(preds.size(0)):
for j in range(preds.size(1)):
hm_ = hm[i, j, :]
pX, pY = int(preds[i, j, 0]), int(preds[i, j, 1])
if pX > 0 and pX < 63 and pY > 0 and pY < 63:
diff = torch.FloatTensor([hm_[pY, pX + 1] - hm_[pY, pX - 1], hm_[pY + 1, pX] - hm_[pY - 1, pX]])
preds[i, j].add_(diff.sign_().mul_(0.25))
return preds
def shuffle_lr(parts, num_landmarks=68, pairs=None):
if num_landmarks == 68:
if pairs is None:
pairs = [
[0, 16],
[1, 15],
[2, 14],
[3, 13],
[4, 12],
[5, 11],
[6, 10],
[7, 9],
[17, 26],
[18, 25],
[19, 24],
[20, 23],
[21, 22],
[36, 45],
[37, 44],
[38, 43],
[39, 42],
[41, 46],
[40, 47],
[31, 35],
[32, 34],
[50, 52],
[49, 53],
[48, 54],
[61, 63],
[60, 64],
[67, 65],
[59, 55],
[58, 56],
]
elif num_landmarks == 98:
if pairs is None:
pairs = [
[0, 32],
[1, 31],
[2, 30],
[3, 29],
[4, 28],
[5, 27],
[6, 26],
[7, 25],
[8, 24],
[9, 23],
[10, 22],
[11, 21],
[12, 20],
[13, 19],
[14, 18],
[15, 17],
[33, 46],
[34, 45],
[35, 44],
[36, 43],
[37, 42],
[38, 50],
[39, 49],
[40, 48],
[41, 47],
[60, 72],
[61, 71],
[62, 70],
[63, 69],
[64, 68],
[65, 75],
[66, 74],
[67, 73],
[96, 97],
[55, 59],
[56, 58],
[76, 82],
[77, 81],
[78, 80],
[88, 92],
[89, 91],
[95, 93],
[87, 83],
[86, 84],
]
elif num_landmarks == 19:
if pairs is None:
pairs = [[0, 5], [1, 4], [2, 3], [6, 11], [7, 10], [8, 9], [12, 14], [15, 17]]
elif num_landmarks == 29:
if pairs is None:
pairs = [[0, 1], [4, 6], [5, 7], [2, 3], [8, 9], [12, 14], [16, 17], [13, 15], [10, 11], [18, 19], [22, 23]]
for matched_p in pairs:
idx1, idx2 = matched_p[0], matched_p[1]
tmp = np.copy(parts[idx1])
np.copyto(parts[idx1], parts[idx2])
np.copyto(parts[idx2], tmp)
return parts
def generate_weight_map(weight_map, heatmap):
k_size = 3
dilate = ndimage.grey_dilation(heatmap, size=(k_size, k_size))
weight_map[np.where(dilate > 0.2)] = 1
return weight_map
def fig2data(fig):
"""
@brief Convert a Matplotlib figure to a 4D numpy array with RGBA channels and return it
@param fig a matplotlib figure
@return a numpy 3D array of RGBA values
"""
# draw the renderer
fig.canvas.draw()
# Get the RGB buffer from the figure
w, h = fig.canvas.get_width_height()
buf = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8)
buf.shape = (w, h, 3)
# canvas.tostring_argb give pixmap in ARGB mode. Roll the ALPHA channel to have it in RGBA mode
buf = np.roll(buf, 3, axis=2)
return buf