Spaces:
Runtime error
Runtime error
from __future__ import division | |
from __future__ import print_function | |
import math | |
import os | |
import sys | |
import cv2 | |
import matplotlib | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import torch | |
from PIL import Image | |
from scipy import ndimage | |
from skimage import io | |
from skimage import transform as ski_transform | |
from torch.utils.data import DataLoader | |
from torch.utils.data import Dataset | |
from torchvision import transforms | |
from torchvision import utils | |
def _gaussian( | |
size=3, | |
sigma=0.25, | |
amplitude=1, | |
normalize=False, | |
width=None, | |
height=None, | |
sigma_horz=None, | |
sigma_vert=None, | |
mean_horz=0.5, | |
mean_vert=0.5, | |
): | |
# handle some defaults | |
if width is None: | |
width = size | |
if height is None: | |
height = size | |
if sigma_horz is None: | |
sigma_horz = sigma | |
if sigma_vert is None: | |
sigma_vert = sigma | |
center_x = mean_horz * width + 0.5 | |
center_y = mean_vert * height + 0.5 | |
gauss = np.empty((height, width), dtype=np.float32) | |
# generate kernel | |
for i in range(height): | |
for j in range(width): | |
gauss[i][j] = amplitude * math.exp( | |
-( | |
math.pow((j + 1 - center_x) / (sigma_horz * width), 2) / 2.0 | |
+ math.pow((i + 1 - center_y) / (sigma_vert * height), 2) / 2.0 | |
) | |
) | |
if normalize: | |
gauss = gauss / np.sum(gauss) | |
return gauss | |
def draw_gaussian(image, point, sigma): | |
# Check if the gaussian is inside | |
ul = [np.floor(np.floor(point[0]) - 3 * sigma), np.floor(np.floor(point[1]) - 3 * sigma)] | |
br = [np.floor(np.floor(point[0]) + 3 * sigma), np.floor(np.floor(point[1]) + 3 * sigma)] | |
if ul[0] > image.shape[1] or ul[1] > image.shape[0] or br[0] < 1 or br[1] < 1: | |
return image | |
size = 6 * sigma + 1 | |
g = _gaussian(size) | |
g_x = [int(max(1, -ul[0])), int(min(br[0], image.shape[1])) - int(max(1, ul[0])) + int(max(1, -ul[0]))] | |
g_y = [int(max(1, -ul[1])), int(min(br[1], image.shape[0])) - int(max(1, ul[1])) + int(max(1, -ul[1]))] | |
img_x = [int(max(1, ul[0])), int(min(br[0], image.shape[1]))] | |
img_y = [int(max(1, ul[1])), int(min(br[1], image.shape[0]))] | |
assert g_x[0] > 0 and g_y[1] > 0 | |
correct = False | |
while not correct: | |
try: | |
image[img_y[0] - 1 : img_y[1], img_x[0] - 1 : img_x[1]] = ( | |
image[img_y[0] - 1 : img_y[1], img_x[0] - 1 : img_x[1]] + g[g_y[0] - 1 : g_y[1], g_x[0] - 1 : g_x[1]] | |
) | |
correct = True | |
except: | |
print( | |
"img_x: {}, img_y: {}, g_x:{}, g_y:{}, point:{}, g_shape:{}, ul:{}, br:{}".format( | |
img_x, img_y, g_x, g_y, point, g.shape, ul, br | |
) | |
) | |
ul = [np.floor(np.floor(point[0]) - 3 * sigma), np.floor(np.floor(point[1]) - 3 * sigma)] | |
br = [np.floor(np.floor(point[0]) + 3 * sigma), np.floor(np.floor(point[1]) + 3 * sigma)] | |
g_x = [int(max(1, -ul[0])), int(min(br[0], image.shape[1])) - int(max(1, ul[0])) + int(max(1, -ul[0]))] | |
g_y = [int(max(1, -ul[1])), int(min(br[1], image.shape[0])) - int(max(1, ul[1])) + int(max(1, -ul[1]))] | |
img_x = [int(max(1, ul[0])), int(min(br[0], image.shape[1]))] | |
img_y = [int(max(1, ul[1])), int(min(br[1], image.shape[0]))] | |
pass | |
image[image > 1] = 1 | |
return image | |
def transform(point, center, scale, resolution, rotation=0, invert=False): | |
_pt = np.ones(3) | |
_pt[0] = point[0] | |
_pt[1] = point[1] | |
h = 200.0 * scale | |
t = np.eye(3) | |
t[0, 0] = resolution / h | |
t[1, 1] = resolution / h | |
t[0, 2] = resolution * (-center[0] / h + 0.5) | |
t[1, 2] = resolution * (-center[1] / h + 0.5) | |
if rotation != 0: | |
rotation = -rotation | |
r = np.eye(3) | |
ang = rotation * math.pi / 180.0 | |
s = math.sin(ang) | |
c = math.cos(ang) | |
r[0][0] = c | |
r[0][1] = -s | |
r[1][0] = s | |
r[1][1] = c | |
t_ = np.eye(3) | |
t_[0][2] = -resolution / 2.0 | |
t_[1][2] = -resolution / 2.0 | |
t_inv = torch.eye(3) | |
t_inv[0][2] = resolution / 2.0 | |
t_inv[1][2] = resolution / 2.0 | |
t = reduce(np.matmul, [t_inv, r, t_, t]) | |
if invert: | |
t = np.linalg.inv(t) | |
new_point = (np.matmul(t, _pt))[0:2] | |
return new_point.astype(int) | |
def cv_crop(image, landmarks, center, scale, resolution=256, center_shift=0): | |
new_image = cv2.copyMakeBorder( | |
image, center_shift, center_shift, center_shift, center_shift, cv2.BORDER_CONSTANT, value=[0, 0, 0] | |
) | |
new_landmarks = landmarks.copy() | |
if center_shift != 0: | |
center[0] += center_shift | |
center[1] += center_shift | |
new_landmarks = new_landmarks + center_shift | |
length = 200 * scale | |
top = int(center[1] - length // 2) | |
bottom = int(center[1] + length // 2) | |
left = int(center[0] - length // 2) | |
right = int(center[0] + length // 2) | |
y_pad = abs(min(top, new_image.shape[0] - bottom, 0)) | |
x_pad = abs(min(left, new_image.shape[1] - right, 0)) | |
top, bottom, left, right = top + y_pad, bottom + y_pad, left + x_pad, right + x_pad | |
new_image = cv2.copyMakeBorder(new_image, y_pad, y_pad, x_pad, x_pad, cv2.BORDER_CONSTANT, value=[0, 0, 0]) | |
new_image = new_image[top:bottom, left:right] | |
new_image = cv2.resize(new_image, dsize=(int(resolution), int(resolution)), interpolation=cv2.INTER_LINEAR) | |
new_landmarks[:, 0] = (new_landmarks[:, 0] + x_pad - left) * resolution / length | |
new_landmarks[:, 1] = (new_landmarks[:, 1] + y_pad - top) * resolution / length | |
return new_image, new_landmarks | |
def cv_rotate(image, landmarks, heatmap, rot, scale, resolution=256): | |
img_mat = cv2.getRotationMatrix2D((resolution // 2, resolution // 2), rot, scale) | |
ones = np.ones(shape=(landmarks.shape[0], 1)) | |
stacked_landmarks = np.hstack([landmarks, ones]) | |
new_landmarks = img_mat.dot(stacked_landmarks.T).T | |
if np.max(new_landmarks) > 255 or np.min(new_landmarks) < 0: | |
return image, landmarks, heatmap | |
else: | |
new_image = cv2.warpAffine(image, img_mat, (resolution, resolution)) | |
if heatmap is not None: | |
new_heatmap = np.zeros((heatmap.shape[0], 64, 64)) | |
for i in range(heatmap.shape[0]): | |
if new_landmarks[i][0] > 0: | |
new_heatmap[i] = draw_gaussian(new_heatmap[i], new_landmarks[i] / 4.0 + 1, 1) | |
return new_image, new_landmarks, new_heatmap | |
def show_landmarks(image, heatmap, gt_landmarks, gt_heatmap): | |
"""Show image with pred_landmarks""" | |
pred_landmarks = [] | |
pred_landmarks, _ = get_preds_fromhm(torch.from_numpy(heatmap).unsqueeze(0)) | |
pred_landmarks = pred_landmarks.squeeze() * 4 | |
# pred_landmarks2 = get_preds_fromhm2(heatmap) | |
heatmap = np.max(gt_heatmap, axis=0) | |
heatmap = heatmap / np.max(heatmap) | |
# image = ski_transform.resize(image, (64, 64))*255 | |
image = image.astype(np.uint8) | |
heatmap = np.max(gt_heatmap, axis=0) | |
heatmap = ski_transform.resize(heatmap, (image.shape[0], image.shape[1])) | |
heatmap *= 255 | |
heatmap = heatmap.astype(np.uint8) | |
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) | |
plt.imshow(image) | |
plt.scatter(gt_landmarks[:, 0], gt_landmarks[:, 1], s=0.5, marker=".", c="g") | |
plt.scatter(pred_landmarks[:, 0], pred_landmarks[:, 1], s=0.5, marker=".", c="r") | |
plt.pause(0.001) # pause a bit so that plots are updated | |
def fan_NME(pred_heatmaps, gt_landmarks, num_landmarks=68): | |
""" | |
Calculate total NME for a batch of data | |
Args: | |
pred_heatmaps: torch tensor of size [batch, points, height, width] | |
gt_landmarks: torch tesnsor of size [batch, points, x, y] | |
Returns: | |
nme: sum of nme for this batch | |
""" | |
nme = 0 | |
pred_landmarks, _ = get_preds_fromhm(pred_heatmaps) | |
pred_landmarks = pred_landmarks.numpy() | |
gt_landmarks = gt_landmarks.numpy() | |
for i in range(pred_landmarks.shape[0]): | |
pred_landmark = pred_landmarks[i] * 4.0 | |
gt_landmark = gt_landmarks[i] | |
if num_landmarks == 68: | |
left_eye = np.average(gt_landmark[36:42], axis=0) | |
right_eye = np.average(gt_landmark[42:48], axis=0) | |
norm_factor = np.linalg.norm(left_eye - right_eye) | |
# norm_factor = np.linalg.norm(gt_landmark[36]- gt_landmark[45]) | |
elif num_landmarks == 98: | |
norm_factor = np.linalg.norm(gt_landmark[60] - gt_landmark[72]) | |
elif num_landmarks == 19: | |
left, top = gt_landmark[-2, :] | |
right, bottom = gt_landmark[-1, :] | |
norm_factor = math.sqrt(abs(right - left) * abs(top - bottom)) | |
gt_landmark = gt_landmark[:-2, :] | |
elif num_landmarks == 29: | |
# norm_factor = np.linalg.norm(gt_landmark[8]- gt_landmark[9]) | |
norm_factor = np.linalg.norm(gt_landmark[16] - gt_landmark[17]) | |
nme += (np.sum(np.linalg.norm(pred_landmark - gt_landmark, axis=1)) / pred_landmark.shape[0]) / norm_factor | |
return nme | |
def fan_NME_hm(pred_heatmaps, gt_heatmaps, num_landmarks=68): | |
""" | |
Calculate total NME for a batch of data | |
Args: | |
pred_heatmaps: torch tensor of size [batch, points, height, width] | |
gt_landmarks: torch tesnsor of size [batch, points, x, y] | |
Returns: | |
nme: sum of nme for this batch | |
""" | |
nme = 0 | |
pred_landmarks, _ = get_index_fromhm(pred_heatmaps) | |
pred_landmarks = pred_landmarks.numpy() | |
gt_landmarks = gt_landmarks.numpy() | |
for i in range(pred_landmarks.shape[0]): | |
pred_landmark = pred_landmarks[i] * 4.0 | |
gt_landmark = gt_landmarks[i] | |
if num_landmarks == 68: | |
left_eye = np.average(gt_landmark[36:42], axis=0) | |
right_eye = np.average(gt_landmark[42:48], axis=0) | |
norm_factor = np.linalg.norm(left_eye - right_eye) | |
else: | |
norm_factor = np.linalg.norm(gt_landmark[60] - gt_landmark[72]) | |
nme += (np.sum(np.linalg.norm(pred_landmark - gt_landmark, axis=1)) / pred_landmark.shape[0]) / norm_factor | |
return nme | |
def power_transform(img, power): | |
img = np.array(img) | |
img_new = np.power((img / 255.0), power) * 255.0 | |
img_new = img_new.astype(np.uint8) | |
img_new = Image.fromarray(img_new) | |
return img_new | |
def get_preds_fromhm(hm, center=None, scale=None, rot=None): | |
max, idx = torch.max(hm.view(hm.size(0), hm.size(1), hm.size(2) * hm.size(3)), 2) | |
idx += 1 | |
preds = idx.view(idx.size(0), idx.size(1), 1).repeat(1, 1, 2).float() | |
preds[..., 0].apply_(lambda x: (x - 1) % hm.size(3) + 1) | |
preds[..., 1].add_(-1).div_(hm.size(2)).floor_().add_(1) | |
for i in range(preds.size(0)): | |
for j in range(preds.size(1)): | |
hm_ = hm[i, j, :] | |
pX, pY = int(preds[i, j, 0]) - 1, int(preds[i, j, 1]) - 1 | |
if pX > 0 and pX < 63 and pY > 0 and pY < 63: | |
diff = torch.FloatTensor([hm_[pY, pX + 1] - hm_[pY, pX - 1], hm_[pY + 1, pX] - hm_[pY - 1, pX]]) | |
preds[i, j].add_(diff.sign_().mul_(0.25)) | |
preds.add_(-0.5) | |
preds_orig = torch.zeros(preds.size()) | |
if center is not None and scale is not None: | |
for i in range(hm.size(0)): | |
for j in range(hm.size(1)): | |
preds_orig[i, j] = transform(preds[i, j], center, scale, hm.size(2), rot, True) | |
return preds, preds_orig | |
def get_index_fromhm(hm): | |
max, idx = torch.max(hm.view(hm.size(0), hm.size(1), hm.size(2) * hm.size(3)), 2) | |
preds = idx.view(idx.size(0), idx.size(1), 1).repeat(1, 1, 2).float() | |
preds[..., 0].remainder_(hm.size(3)) | |
preds[..., 1].div_(hm.size(2)).floor_() | |
for i in range(preds.size(0)): | |
for j in range(preds.size(1)): | |
hm_ = hm[i, j, :] | |
pX, pY = int(preds[i, j, 0]), int(preds[i, j, 1]) | |
if pX > 0 and pX < 63 and pY > 0 and pY < 63: | |
diff = torch.FloatTensor([hm_[pY, pX + 1] - hm_[pY, pX - 1], hm_[pY + 1, pX] - hm_[pY - 1, pX]]) | |
preds[i, j].add_(diff.sign_().mul_(0.25)) | |
return preds | |
def shuffle_lr(parts, num_landmarks=68, pairs=None): | |
if num_landmarks == 68: | |
if pairs is None: | |
pairs = [ | |
[0, 16], | |
[1, 15], | |
[2, 14], | |
[3, 13], | |
[4, 12], | |
[5, 11], | |
[6, 10], | |
[7, 9], | |
[17, 26], | |
[18, 25], | |
[19, 24], | |
[20, 23], | |
[21, 22], | |
[36, 45], | |
[37, 44], | |
[38, 43], | |
[39, 42], | |
[41, 46], | |
[40, 47], | |
[31, 35], | |
[32, 34], | |
[50, 52], | |
[49, 53], | |
[48, 54], | |
[61, 63], | |
[60, 64], | |
[67, 65], | |
[59, 55], | |
[58, 56], | |
] | |
elif num_landmarks == 98: | |
if pairs is None: | |
pairs = [ | |
[0, 32], | |
[1, 31], | |
[2, 30], | |
[3, 29], | |
[4, 28], | |
[5, 27], | |
[6, 26], | |
[7, 25], | |
[8, 24], | |
[9, 23], | |
[10, 22], | |
[11, 21], | |
[12, 20], | |
[13, 19], | |
[14, 18], | |
[15, 17], | |
[33, 46], | |
[34, 45], | |
[35, 44], | |
[36, 43], | |
[37, 42], | |
[38, 50], | |
[39, 49], | |
[40, 48], | |
[41, 47], | |
[60, 72], | |
[61, 71], | |
[62, 70], | |
[63, 69], | |
[64, 68], | |
[65, 75], | |
[66, 74], | |
[67, 73], | |
[96, 97], | |
[55, 59], | |
[56, 58], | |
[76, 82], | |
[77, 81], | |
[78, 80], | |
[88, 92], | |
[89, 91], | |
[95, 93], | |
[87, 83], | |
[86, 84], | |
] | |
elif num_landmarks == 19: | |
if pairs is None: | |
pairs = [[0, 5], [1, 4], [2, 3], [6, 11], [7, 10], [8, 9], [12, 14], [15, 17]] | |
elif num_landmarks == 29: | |
if pairs is None: | |
pairs = [[0, 1], [4, 6], [5, 7], [2, 3], [8, 9], [12, 14], [16, 17], [13, 15], [10, 11], [18, 19], [22, 23]] | |
for matched_p in pairs: | |
idx1, idx2 = matched_p[0], matched_p[1] | |
tmp = np.copy(parts[idx1]) | |
np.copyto(parts[idx1], parts[idx2]) | |
np.copyto(parts[idx2], tmp) | |
return parts | |
def generate_weight_map(weight_map, heatmap): | |
k_size = 3 | |
dilate = ndimage.grey_dilation(heatmap, size=(k_size, k_size)) | |
weight_map[np.where(dilate > 0.2)] = 1 | |
return weight_map | |
def fig2data(fig): | |
""" | |
@brief Convert a Matplotlib figure to a 4D numpy array with RGBA channels and return it | |
@param fig a matplotlib figure | |
@return a numpy 3D array of RGBA values | |
""" | |
# draw the renderer | |
fig.canvas.draw() | |
# Get the RGB buffer from the figure | |
w, h = fig.canvas.get_width_height() | |
buf = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8) | |
buf.shape = (w, h, 3) | |
# canvas.tostring_argb give pixmap in ARGB mode. Roll the ALPHA channel to have it in RGBA mode | |
buf = np.roll(buf, 3, axis=2) | |
return buf | |