xuehongyang
ser
83d8d3c
import matplotlib
matplotlib.use("Agg")
import math
import torch
import copy
import time
from torch.autograd import Variable
import shutil
from skimage import io
import numpy as np
from utils.utils import fan_NME, show_landmarks, get_preds_fromhm
from PIL import Image, ImageDraw
import os
import sys
import cv2
import matplotlib.pyplot as plt
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def eval_model(
model, dataloaders, dataset_sizes, writer, use_gpu=True, epoches=5, dataset="val", save_path="./", num_landmarks=68
):
global_nme = 0
model.eval()
for epoch in range(epoches):
running_loss = 0
step = 0
total_nme = 0
total_count = 0
fail_count = 0
nmes = []
# running_corrects = 0
# Iterate over data.
with torch.no_grad():
for data in dataloaders[dataset]:
total_runtime = 0
run_count = 0
step_start = time.time()
step += 1
# get the inputs
inputs = data["image"].type(torch.FloatTensor)
labels_heatmap = data["heatmap"].type(torch.FloatTensor)
labels_boundary = data["boundary"].type(torch.FloatTensor)
landmarks = data["landmarks"].type(torch.FloatTensor)
loss_weight_map = data["weight_map"].type(torch.FloatTensor)
# wrap them in Variable
if use_gpu:
inputs = inputs.to(device)
labels_heatmap = labels_heatmap.to(device)
labels_boundary = labels_boundary.to(device)
loss_weight_map = loss_weight_map.to(device)
else:
inputs, labels_heatmap = Variable(inputs), Variable(labels_heatmap)
labels_boundary = Variable(labels_boundary)
labels = torch.cat((labels_heatmap, labels_boundary), 1)
single_start = time.time()
outputs, boundary_channels = model(inputs)
single_end = time.time()
total_runtime += time.time() - single_start
run_count += 1
step_end = time.time()
for i in range(inputs.shape[0]):
img = inputs[i]
img = img.cpu().numpy()
img = img.transpose((1, 2, 0)) * 255.0
img = img.astype(np.uint8)
img = Image.fromarray(img)
# pred_heatmap = outputs[-1][i].detach().cpu()[:-1, :, :]
pred_heatmap = outputs[-1][:, :-1, :, :][i].detach().cpu()
pred_landmarks, _ = get_preds_fromhm(pred_heatmap.unsqueeze(0))
pred_landmarks = pred_landmarks.squeeze().numpy()
gt_landmarks = data["landmarks"][i].numpy()
if num_landmarks == 68:
left_eye = np.average(gt_landmarks[36:42], axis=0)
right_eye = np.average(gt_landmarks[42:48], axis=0)
norm_factor = np.linalg.norm(left_eye - right_eye)
# norm_factor = np.linalg.norm(gt_landmarks[36]- gt_landmarks[45])
elif num_landmarks == 98:
norm_factor = np.linalg.norm(gt_landmarks[60] - gt_landmarks[72])
elif num_landmarks == 19:
left, top = gt_landmarks[-2, :]
right, bottom = gt_landmarks[-1, :]
norm_factor = math.sqrt(abs(right - left) * abs(top - bottom))
gt_landmarks = gt_landmarks[:-2, :]
elif num_landmarks == 29:
# norm_factor = np.linalg.norm(gt_landmarks[8]- gt_landmarks[9])
norm_factor = np.linalg.norm(gt_landmarks[16] - gt_landmarks[17])
single_nme = (
np.sum(np.linalg.norm(pred_landmarks * 4 - gt_landmarks, axis=1)) / pred_landmarks.shape[0]
) / norm_factor
nmes.append(single_nme)
total_count += 1
if single_nme > 0.1:
fail_count += 1
if step % 10 == 0:
print(
"Step {} Time: {:.6f} Input Mean: {:.6f} Output Mean: {:.6f}".format(
step, step_end - step_start, torch.mean(labels), torch.mean(outputs[0])
)
)
# gt_landmarks = landmarks.numpy()
# pred_heatmap = outputs[-1].to('cpu').numpy()
gt_landmarks = landmarks
batch_nme = fan_NME(outputs[-1][:, :-1, :, :].detach().cpu(), gt_landmarks, num_landmarks)
# batch_nme = 0
total_nme += batch_nme
epoch_nme = total_nme / dataset_sizes["val"]
global_nme += epoch_nme
nme_save_path = os.path.join(save_path, "nme_log.npy")
np.save(nme_save_path, np.array(nmes))
print(
"NME: {:.6f} Failure Rate: {:.6f} Total Count: {:.6f} Fail Count: {:.6f}".format(
epoch_nme, fail_count / total_count, total_count, fail_count
)
)
print("Evaluation done! Average NME: {:.6f}".format(global_nme / epoches))
print("Everage runtime for a single batch: {:.6f}".format(total_runtime / run_count))
return model