hyunseoki commited on
Commit
435e3d0
1 Parent(s): 043c6d6
Files changed (1) hide show
  1. app.py +5 -2
app.py CHANGED
@@ -6,18 +6,21 @@ import os, glob
6
  import spaces
7
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
8
  import torch
 
9
  model_name = 'hyunseoki/ReMoDetect-deberta'
10
 
11
  THESHOLD=4.0
12
- predictor = AutoModelForSequenceClassification.from_pretrained(model_name)
13
  tokenizer = AutoTokenizer.from_pretrained(model_name)
 
14
 
15
  @spaces.GPU
16
  def predict(text):
17
  device = "cuda" if torch.cuda.is_available() else "cpu"
18
  predictor.to(device)
19
  tokenized = tokenizer(text, return_tensors='pt', truncation=True, max_length=512).to(device)
20
- result = predictor(**tokenized).logits[0].cpu().detach().item()
 
21
  AI_score = round(torch.sigmoid(torch.tensor(result-THESHOLD)*2).item(),2)
22
  return f'{AI_score*100} %', f'{round(result,2)}'
23
 
 
6
  import spaces
7
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
8
  import torch
9
+
10
  model_name = 'hyunseoki/ReMoDetect-deberta'
11
 
12
  THESHOLD=4.0
13
+ predictor = AutoModelForSequenceClassification.from_pretrained(model_name, force_download=True)
14
  tokenizer = AutoTokenizer.from_pretrained(model_name)
15
+ predictor.eval()
16
 
17
  @spaces.GPU
18
  def predict(text):
19
  device = "cuda" if torch.cuda.is_available() else "cpu"
20
  predictor.to(device)
21
  tokenized = tokenizer(text, return_tensors='pt', truncation=True, max_length=512).to(device)
22
+ with torch.no_grad():
23
+ result = predictor(**tokenized).logits[0].cpu().detach().item()
24
  AI_score = round(torch.sigmoid(torch.tensor(result-THESHOLD)*2).item(),2)
25
  return f'{AI_score*100} %', f'{round(result,2)}'
26