Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,147 +1,40 @@
|
|
| 1 |
import spaces
|
| 2 |
import torch
|
| 3 |
-
|
| 4 |
import gradio as gr
|
| 5 |
-
import yt_dlp as youtube_dl
|
| 6 |
from transformers import pipeline
|
| 7 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
| 8 |
-
|
| 9 |
import tempfile
|
| 10 |
import os
|
| 11 |
|
| 12 |
MODEL_NAME = "ylacombe/whisper-large-v3-turbo"
|
| 13 |
BATCH_SIZE = 8
|
| 14 |
-
FILE_LIMIT_MB = 1000
|
| 15 |
-
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
|
| 16 |
-
|
| 17 |
device = 0 if torch.cuda.is_available() else "cpu"
|
| 18 |
|
| 19 |
pipe = pipeline(
|
| 20 |
task="automatic-speech-recognition",
|
| 21 |
model=MODEL_NAME,
|
| 22 |
-
chunk_length_s=
|
| 23 |
device=device,
|
| 24 |
)
|
| 25 |
|
| 26 |
-
|
| 27 |
@spaces.GPU
|
| 28 |
-
def transcribe(inputs,
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
)
|
| 42 |
-
return HTML_str
|
| 43 |
-
|
| 44 |
-
def download_yt_audio(yt_url, filename):
|
| 45 |
-
info_loader = youtube_dl.YoutubeDL()
|
| 46 |
-
|
| 47 |
-
try:
|
| 48 |
-
info = info_loader.extract_info(yt_url, download=False)
|
| 49 |
-
except youtube_dl.utils.DownloadError as err:
|
| 50 |
-
raise gr.Error(str(err))
|
| 51 |
-
|
| 52 |
-
file_length = info["duration_string"]
|
| 53 |
-
file_h_m_s = file_length.split(":")
|
| 54 |
-
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
|
| 55 |
-
|
| 56 |
-
if len(file_h_m_s) == 1:
|
| 57 |
-
file_h_m_s.insert(0, 0)
|
| 58 |
-
if len(file_h_m_s) == 2:
|
| 59 |
-
file_h_m_s.insert(0, 0)
|
| 60 |
-
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
|
| 61 |
-
|
| 62 |
-
if file_length_s > YT_LENGTH_LIMIT_S:
|
| 63 |
-
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
|
| 64 |
-
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
| 65 |
-
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
| 66 |
-
|
| 67 |
-
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
| 68 |
-
|
| 69 |
-
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
| 70 |
-
try:
|
| 71 |
-
ydl.download([yt_url])
|
| 72 |
-
except youtube_dl.utils.ExtractorError as err:
|
| 73 |
-
raise gr.Error(str(err))
|
| 74 |
-
|
| 75 |
-
@spaces.GPU
|
| 76 |
-
def yt_transcribe(yt_url, task, max_filesize=75.0):
|
| 77 |
-
html_embed_str = _return_yt_html_embed(yt_url)
|
| 78 |
-
|
| 79 |
-
with tempfile.TemporaryDirectory() as tmpdirname:
|
| 80 |
-
filepath = os.path.join(tmpdirname, "video.mp4")
|
| 81 |
-
download_yt_audio(yt_url, filepath)
|
| 82 |
-
with open(filepath, "rb") as f:
|
| 83 |
-
inputs = f.read()
|
| 84 |
-
|
| 85 |
-
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
| 86 |
-
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
| 87 |
-
|
| 88 |
-
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
| 89 |
-
|
| 90 |
-
return html_embed_str, text
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
demo = gr.Blocks()
|
| 94 |
-
|
| 95 |
-
mf_transcribe = gr.Interface(
|
| 96 |
-
fn=transcribe,
|
| 97 |
-
inputs=[
|
| 98 |
-
gr.Audio(sources="microphone", type="filepath"),
|
| 99 |
-
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
| 100 |
-
],
|
| 101 |
-
outputs="text",
|
| 102 |
-
title="Whisper Large V3 Turbo: Transcribe Audio",
|
| 103 |
-
description=(
|
| 104 |
-
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
| 105 |
-
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
| 106 |
-
" of arbitrary length."
|
| 107 |
-
),
|
| 108 |
-
allow_flagging="never",
|
| 109 |
-
)
|
| 110 |
-
|
| 111 |
-
file_transcribe = gr.Interface(
|
| 112 |
-
fn=transcribe,
|
| 113 |
-
inputs=[
|
| 114 |
-
gr.Audio(sources="upload", type="filepath", label="Audio file"),
|
| 115 |
-
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
| 116 |
-
],
|
| 117 |
-
outputs="text",
|
| 118 |
-
title="Whisper Large V3: Transcribe Audio",
|
| 119 |
-
description=(
|
| 120 |
-
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
| 121 |
-
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
| 122 |
-
" of arbitrary length."
|
| 123 |
-
),
|
| 124 |
-
allow_flagging="never",
|
| 125 |
-
)
|
| 126 |
-
|
| 127 |
-
yt_transcribe = gr.Interface(
|
| 128 |
-
fn=yt_transcribe,
|
| 129 |
-
inputs=[
|
| 130 |
-
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
| 131 |
-
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
| 132 |
-
],
|
| 133 |
-
outputs=["html", "text"],
|
| 134 |
-
title="Whisper Large V3: Transcribe YouTube",
|
| 135 |
-
description=(
|
| 136 |
-
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
|
| 137 |
-
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
|
| 138 |
-
" arbitrary length."
|
| 139 |
-
),
|
| 140 |
-
allow_flagging="never",
|
| 141 |
-
)
|
| 142 |
-
|
| 143 |
-
with demo:
|
| 144 |
-
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
|
| 145 |
|
| 146 |
demo.queue().launch()
|
| 147 |
-
|
|
|
|
| 1 |
import spaces
|
| 2 |
import torch
|
|
|
|
| 3 |
import gradio as gr
|
|
|
|
| 4 |
from transformers import pipeline
|
| 5 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
|
|
|
| 6 |
import tempfile
|
| 7 |
import os
|
| 8 |
|
| 9 |
MODEL_NAME = "ylacombe/whisper-large-v3-turbo"
|
| 10 |
BATCH_SIZE = 8
|
|
|
|
|
|
|
|
|
|
| 11 |
device = 0 if torch.cuda.is_available() else "cpu"
|
| 12 |
|
| 13 |
pipe = pipeline(
|
| 14 |
task="automatic-speech-recognition",
|
| 15 |
model=MODEL_NAME,
|
| 16 |
+
chunk_length_s=1,
|
| 17 |
device=device,
|
| 18 |
)
|
| 19 |
|
|
|
|
| 20 |
@spaces.GPU
|
| 21 |
+
def transcribe(inputs, previous_transcription):
|
| 22 |
+
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"]
|
| 23 |
+
if previous_transcription:
|
| 24 |
+
text = previous_transcription + text
|
| 25 |
+
return text
|
| 26 |
+
|
| 27 |
+
with gr.Blocks() as demo:
|
| 28 |
+
input_audio = gr.Audio(streaming=True),
|
| 29 |
+
output = gr.Textbox("Transcription")
|
| 30 |
+
|
| 31 |
+
input_audio.stream(
|
| 32 |
+
transcribe,
|
| 33 |
+
[input_audio, output],
|
| 34 |
+
[output],
|
| 35 |
+
time_limit=15,
|
| 36 |
+
stream_every=0.5,
|
| 37 |
+
concurrency_limit=None
|
| 38 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
demo.queue().launch()
|
|
|