Spaces:
Sleeping
Sleeping
| # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license | |
| import argparse | |
| import cv2 | |
| import numpy as np | |
| import onnxruntime as ort | |
| import torch | |
| from ultralytics.utils import ASSETS, yaml_load | |
| from ultralytics.utils.checks import check_requirements, check_yaml | |
| class RTDETR: | |
| """RTDETR object detection model class for handling inference and visualization.""" | |
| def __init__(self, model_path, img_path, conf_thres=0.5, iou_thres=0.5): | |
| """ | |
| Initializes the RTDETR object with the specified parameters. | |
| Args: | |
| model_path: Path to the ONNX model file. | |
| img_path: Path to the input image. | |
| conf_thres: Confidence threshold for object detection. | |
| iou_thres: IoU threshold for non-maximum suppression | |
| """ | |
| self.model_path = model_path | |
| self.img_path = img_path | |
| self.conf_thres = conf_thres | |
| self.iou_thres = iou_thres | |
| # Set up the ONNX runtime session with CUDA and CPU execution providers | |
| self.session = ort.InferenceSession(model_path, providers=["CUDAExecutionProvider", "CPUExecutionProvider"]) | |
| self.model_input = self.session.get_inputs() | |
| self.input_width = self.model_input[0].shape[2] | |
| self.input_height = self.model_input[0].shape[3] | |
| # Load class names from the COCO dataset YAML file | |
| self.classes = yaml_load(check_yaml("coco8.yaml"))["names"] | |
| # Generate a color palette for drawing bounding boxes | |
| self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3)) | |
| def draw_detections(self, box, score, class_id): | |
| """ | |
| Draws bounding boxes and labels on the input image based on the detected objects. | |
| Args: | |
| box: Detected bounding box. | |
| score: Corresponding detection score. | |
| class_id: Class ID for the detected object. | |
| Returns: | |
| None | |
| """ | |
| # Extract the coordinates of the bounding box | |
| x1, y1, x2, y2 = box | |
| # Retrieve the color for the class ID | |
| color = self.color_palette[class_id] | |
| # Draw the bounding box on the image | |
| cv2.rectangle(self.img, (int(x1), int(y1)), (int(x2), int(y2)), color, 2) | |
| # Create the label text with class name and score | |
| label = f"{self.classes[class_id]}: {score:.2f}" | |
| # Calculate the dimensions of the label text | |
| (label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) | |
| # Calculate the position of the label text | |
| label_x = x1 | |
| label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10 | |
| # Draw a filled rectangle as the background for the label text | |
| cv2.rectangle( | |
| self.img, | |
| (int(label_x), int(label_y - label_height)), | |
| (int(label_x + label_width), int(label_y + label_height)), | |
| color, | |
| cv2.FILLED, | |
| ) | |
| # Draw the label text on the image | |
| cv2.putText( | |
| self.img, label, (int(label_x), int(label_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA | |
| ) | |
| def preprocess(self): | |
| """ | |
| Preprocesses the input image before performing inference. | |
| Returns: | |
| image_data: Preprocessed image data ready for inference. | |
| """ | |
| # Read the input image using OpenCV | |
| self.img = cv2.imread(self.img_path) | |
| # Get the height and width of the input image | |
| self.img_height, self.img_width = self.img.shape[:2] | |
| # Convert the image color space from BGR to RGB | |
| img = cv2.cvtColor(self.img, cv2.COLOR_BGR2RGB) | |
| # Resize the image to match the input shape | |
| img = cv2.resize(img, (self.input_width, self.input_height)) | |
| # Normalize the image data by dividing it by 255.0 | |
| image_data = np.array(img) / 255.0 | |
| # Transpose the image to have the channel dimension as the first dimension | |
| image_data = np.transpose(image_data, (2, 0, 1)) # Channel first | |
| # Expand the dimensions of the image data to match the expected input shape | |
| image_data = np.expand_dims(image_data, axis=0).astype(np.float32) | |
| # Return the preprocessed image data | |
| return image_data | |
| def bbox_cxcywh_to_xyxy(self, boxes): | |
| """ | |
| Converts bounding boxes from (center x, center y, width, height) format to (x_min, y_min, x_max, y_max) format. | |
| Args: | |
| boxes (numpy.ndarray): An array of shape (N, 4) where each row represents | |
| a bounding box in (cx, cy, w, h) format. | |
| Returns: | |
| numpy.ndarray: An array of shape (N, 4) where each row represents | |
| a bounding box in (x_min, y_min, x_max, y_max) format. | |
| """ | |
| # Calculate half width and half height of the bounding boxes | |
| half_width = boxes[:, 2] / 2 | |
| half_height = boxes[:, 3] / 2 | |
| # Calculate the coordinates of the bounding boxes | |
| x_min = boxes[:, 0] - half_width | |
| y_min = boxes[:, 1] - half_height | |
| x_max = boxes[:, 0] + half_width | |
| y_max = boxes[:, 1] + half_height | |
| # Return the bounding boxes in (x_min, y_min, x_max, y_max) format | |
| return np.column_stack((x_min, y_min, x_max, y_max)) | |
| def postprocess(self, model_output): | |
| """ | |
| Postprocesses the model output to extract detections and draw them on the input image. | |
| Args: | |
| model_output: Output of the model inference. | |
| Returns: | |
| np.array: Annotated image with detections. | |
| """ | |
| # Squeeze the model output to remove unnecessary dimensions | |
| outputs = np.squeeze(model_output[0]) | |
| # Extract bounding boxes and scores from the model output | |
| boxes = outputs[:, :4] | |
| scores = outputs[:, 4:] | |
| # Get the class labels and scores for each detection | |
| labels = np.argmax(scores, axis=1) | |
| scores = np.max(scores, axis=1) | |
| # Apply confidence threshold to filter out low-confidence detections | |
| mask = scores > self.conf_thres | |
| boxes, scores, labels = boxes[mask], scores[mask], labels[mask] | |
| # Convert bounding boxes to (x_min, y_min, x_max, y_max) format | |
| boxes = self.bbox_cxcywh_to_xyxy(boxes) | |
| # Scale bounding boxes to match the original image dimensions | |
| boxes[:, 0::2] *= self.img_width | |
| boxes[:, 1::2] *= self.img_height | |
| # Draw detections on the image | |
| for box, score, label in zip(boxes, scores, labels): | |
| self.draw_detections(box, score, label) | |
| # Return the annotated image | |
| return self.img | |
| def main(self): | |
| """ | |
| Executes the detection on the input image using the ONNX model. | |
| Returns: | |
| np.array: Output image with annotations. | |
| """ | |
| # Preprocess the image for model input | |
| image_data = self.preprocess() | |
| # Run the model inference | |
| model_output = self.session.run(None, {self.model_input[0].name: image_data}) | |
| # Process and return the model output | |
| return self.postprocess(model_output) | |
| if __name__ == "__main__": | |
| # Set up argument parser for command-line arguments | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--model", type=str, default="rtdetr-l.onnx", help="Path to the ONNX model file.") | |
| parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to the input image.") | |
| parser.add_argument("--conf-thres", type=float, default=0.5, help="Confidence threshold for object detection.") | |
| parser.add_argument("--iou-thres", type=float, default=0.5, help="IoU threshold for non-maximum suppression.") | |
| args = parser.parse_args() | |
| # Check for dependencies and set up ONNX runtime | |
| check_requirements("onnxruntime-gpu" if torch.cuda.is_available() else "onnxruntime") | |
| # Create the detector instance with specified parameters | |
| detection = RTDETR(args.model, args.img, args.conf_thres, args.iou_thres) | |
| # Perform detection and get the output image | |
| output_image = detection.main() | |
| # Display the annotated output image | |
| cv2.namedWindow("Output", cv2.WINDOW_NORMAL) | |
| cv2.imshow("Output", output_image) | |
| cv2.waitKey(0) | |