Update
Browse files
README.md
CHANGED
@@ -4,6 +4,7 @@ emoji: π
|
|
4 |
colorFrom: red
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
|
|
7 |
app_file: app.py
|
8 |
pinned: false
|
9 |
---
|
|
|
4 |
colorFrom: red
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.0.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
app.py
CHANGED
@@ -2,26 +2,42 @@
|
|
2 |
|
3 |
from __future__ import annotations
|
4 |
|
|
|
5 |
import functools
|
6 |
import os
|
7 |
import pickle
|
8 |
import sys
|
9 |
|
10 |
-
sys.path.insert(0, 'stylegan3')
|
11 |
-
|
12 |
import gradio as gr
|
13 |
import numpy as np
|
14 |
-
import PIL.Image
|
15 |
import torch
|
|
|
16 |
from huggingface_hub import hf_hub_download
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
MODEL_REPO = 'hysts/stylegan3-anime-face-exp001-model'
|
19 |
MODEL_FILE_NAME = '006600.pkl'
|
|
|
20 |
TOKEN = os.environ['TOKEN']
|
21 |
|
22 |
-
DEFAULT_SEED = 3407851645
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
|
27 |
def make_transform(translate: tuple[float, float], angle: float) -> np.ndarray:
|
@@ -37,13 +53,15 @@ def make_transform(translate: tuple[float, float], angle: float) -> np.ndarray:
|
|
37 |
return mat
|
38 |
|
39 |
|
40 |
-
def generate_z(seed, device):
|
41 |
return torch.from_numpy(np.random.RandomState(seed).randn(1,
|
42 |
512)).to(device)
|
43 |
|
44 |
|
45 |
@torch.inference_mode()
|
46 |
-
def generate_image(seed, truncation_psi, tx, ty
|
|
|
|
|
47 |
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
|
48 |
z = generate_z(seed, device)
|
49 |
c = torch.zeros(0).to(device)
|
@@ -54,10 +72,10 @@ def generate_image(seed, truncation_psi, tx, ty, angle, model, device):
|
|
54 |
|
55 |
out = model(z, c, truncation_psi=truncation_psi)
|
56 |
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
|
57 |
-
return
|
58 |
|
59 |
|
60 |
-
def load_model(device):
|
61 |
path = hf_hub_download(MODEL_REPO, MODEL_FILE_NAME, use_auth_token=TOKEN)
|
62 |
with open(path, 'rb') as f:
|
63 |
model = pickle.load(f)
|
@@ -71,7 +89,8 @@ def load_model(device):
|
|
71 |
|
72 |
|
73 |
def main():
|
74 |
-
|
|
|
75 |
|
76 |
model = load_model(device)
|
77 |
func = functools.partial(generate_image, model=model, device=device)
|
@@ -80,19 +99,25 @@ def main():
|
|
80 |
gr.Interface(
|
81 |
func,
|
82 |
[
|
83 |
-
gr.inputs.Number(default=
|
84 |
gr.inputs.Slider(
|
85 |
0, 2, step=0.05, default=0.7, label='Truncation psi'),
|
86 |
gr.inputs.Slider(-1, 1, step=0.05, default=0, label='Translate X'),
|
87 |
gr.inputs.Slider(-1, 1, step=0.05, default=0, label='Translate Y'),
|
88 |
gr.inputs.Slider(-180, 180, step=5, default=0, label='Angle'),
|
89 |
],
|
90 |
-
gr.outputs.Image(type='
|
91 |
title=TITLE,
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
|
98 |
if __name__ == '__main__':
|
|
|
2 |
|
3 |
from __future__ import annotations
|
4 |
|
5 |
+
import argparse
|
6 |
import functools
|
7 |
import os
|
8 |
import pickle
|
9 |
import sys
|
10 |
|
|
|
|
|
11 |
import gradio as gr
|
12 |
import numpy as np
|
|
|
13 |
import torch
|
14 |
+
import torch.nn as nn
|
15 |
from huggingface_hub import hf_hub_download
|
16 |
|
17 |
+
sys.path.insert(0, 'stylegan3')
|
18 |
+
|
19 |
+
TITLE = 'StyleGAN3 Anime Face Generation'
|
20 |
+
DESCRIPTION = 'Expected execution time on Hugging Face Spaces: 20s'
|
21 |
+
ARTICLE = '<center><img src="https://visitor-badge.glitch.me/badge?page_id=hysts.stylegan3-anime-face-generation-exp001" alt="visitor badge"/></center>'
|
22 |
+
|
23 |
MODEL_REPO = 'hysts/stylegan3-anime-face-exp001-model'
|
24 |
MODEL_FILE_NAME = '006600.pkl'
|
25 |
+
|
26 |
TOKEN = os.environ['TOKEN']
|
27 |
|
|
|
28 |
|
29 |
+
def parse_args() -> argparse.Namespace:
|
30 |
+
parser = argparse.ArgumentParser()
|
31 |
+
parser.add_argument('--device', type=str, default='cpu')
|
32 |
+
parser.add_argument('--theme', type=str)
|
33 |
+
parser.add_argument('--live', action='store_true')
|
34 |
+
parser.add_argument('--share', action='store_true')
|
35 |
+
parser.add_argument('--port', type=int)
|
36 |
+
parser.add_argument('--disable-queue',
|
37 |
+
dest='enable_queue',
|
38 |
+
action='store_false')
|
39 |
+
parser.add_argument('--allow-flagging', type=str, default='never')
|
40 |
+
return parser.parse_args()
|
41 |
|
42 |
|
43 |
def make_transform(translate: tuple[float, float], angle: float) -> np.ndarray:
|
|
|
53 |
return mat
|
54 |
|
55 |
|
56 |
+
def generate_z(seed: int, device: torch.device) -> torch.Tensor:
|
57 |
return torch.from_numpy(np.random.RandomState(seed).randn(1,
|
58 |
512)).to(device)
|
59 |
|
60 |
|
61 |
@torch.inference_mode()
|
62 |
+
def generate_image(seed: int, truncation_psi: float, tx: float, ty: float,
|
63 |
+
angle: float, model: nn.Module,
|
64 |
+
device: torch.device) -> np.ndarray:
|
65 |
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
|
66 |
z = generate_z(seed, device)
|
67 |
c = torch.zeros(0).to(device)
|
|
|
72 |
|
73 |
out = model(z, c, truncation_psi=truncation_psi)
|
74 |
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
|
75 |
+
return out[0].cpu().numpy()
|
76 |
|
77 |
|
78 |
+
def load_model(device: torch.device) -> nn.Module:
|
79 |
path = hf_hub_download(MODEL_REPO, MODEL_FILE_NAME, use_auth_token=TOKEN)
|
80 |
with open(path, 'rb') as f:
|
81 |
model = pickle.load(f)
|
|
|
89 |
|
90 |
|
91 |
def main():
|
92 |
+
args = parse_args()
|
93 |
+
device = torch.device(args.device)
|
94 |
|
95 |
model = load_model(device)
|
96 |
func = functools.partial(generate_image, model=model, device=device)
|
|
|
99 |
gr.Interface(
|
100 |
func,
|
101 |
[
|
102 |
+
gr.inputs.Number(default=3407851645, label='Seed'),
|
103 |
gr.inputs.Slider(
|
104 |
0, 2, step=0.05, default=0.7, label='Truncation psi'),
|
105 |
gr.inputs.Slider(-1, 1, step=0.05, default=0, label='Translate X'),
|
106 |
gr.inputs.Slider(-1, 1, step=0.05, default=0, label='Translate Y'),
|
107 |
gr.inputs.Slider(-180, 180, step=5, default=0, label='Angle'),
|
108 |
],
|
109 |
+
gr.outputs.Image(type='numpy', label='Output'),
|
110 |
title=TITLE,
|
111 |
+
description=DESCRIPTION,
|
112 |
+
article=ARTICLE,
|
113 |
+
theme=args.theme,
|
114 |
+
allow_flagging='never',
|
115 |
+
live=args.live,
|
116 |
+
).launch(
|
117 |
+
enable_queue=args.enable_queue,
|
118 |
+
server_port=args.port,
|
119 |
+
share=args.share,
|
120 |
+
)
|
121 |
|
122 |
|
123 |
if __name__ == '__main__':
|