hysts's picture
hysts HF staff
Update
b97628e
raw
history blame
4.03 kB
#!/usr/bin/env python
from __future__ import annotations
import os
import pathlib
import sys
import gradio as gr
import numpy as np
import spaces
import torch
from huggingface_hub import hf_hub_download
sys.path.insert(0, "face_detection")
sys.path.insert(0, "face_parsing")
sys.path.insert(0, "roi_tanh_warping")
from ibug.face_detection import RetinaFacePredictor
from ibug.face_parsing.parser import WEIGHT, FaceParser
from ibug.face_parsing.utils import label_colormap
DESCRIPTION = "# [hhj1897/face_parsing](https://github.com/hhj1897/face_parsing)"
def is_lfs_pointer_file(path: pathlib.Path) -> bool:
try:
with open(path, "r") as f:
# Git LFS pointer files usually start with version line
version_line = f.readline()
if version_line.startswith("version https://git-lfs.github.com/spec/"):
# Check for the presence of oid and size lines
oid_line = f.readline()
size_line = f.readline()
if oid_line.startswith("oid sha256:") and size_line.startswith("size "):
return True
except Exception as e:
print(f"Error reading file {path}: {e}")
return False
lfs_model_paths = sorted(pathlib.Path("face_parsing").rglob("*.torch"))
for lfs_model_path in lfs_model_paths:
if is_lfs_pointer_file(lfs_model_path):
os.remove(lfs_model_path)
out_path = hf_hub_download(
"public-data/ibug-face-parsing",
filename=lfs_model_path.name,
repo_type="model",
subfolder=lfs_model_path.parts[-3],
)
os.symlink(out_path, lfs_model_path)
def load_model(model_name: str, device: torch.device) -> FaceParser:
encoder, decoder, num_classes = model_name.split("-")
num_classes = int(num_classes) # type: ignore
model = FaceParser(device=device, encoder=encoder, decoder=decoder, num_classes=num_classes)
model.num_classes = num_classes
return model
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
detector = RetinaFacePredictor(threshold=0.8, device="cpu", model=RetinaFacePredictor.get_model("mobilenet0.25"))
detector.device = device
detector.net.to(device)
model_names = list(WEIGHT.keys())
models = {name: load_model(name, device=device) for name in model_names}
@spaces.GPU
def predict(image: np.ndarray, model_name: str, max_num_faces: int) -> np.ndarray:
model = models[model_name]
colormap = label_colormap(model.num_classes)
# RGB -> BGR
image = image[:, :, ::-1]
faces = detector(image, rgb=False)
if len(faces) == 0:
raise RuntimeError("No face was found.")
faces = sorted(list(faces), key=lambda x: -x[4])[:max_num_faces][::-1]
masks = model.predict_img(image, faces, rgb=False)
mask_image = np.zeros_like(image)
for mask in masks:
temp = colormap[mask]
mask_image[temp > 0] = temp[temp > 0]
res = image.astype(float) * 0.5 + mask_image[:, :, ::-1] * 0.5
res = np.clip(np.round(res), 0, 255).astype(np.uint8)
return res[:, :, ::-1]
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
image = gr.Image(type="numpy", label="Input")
model_name = gr.Radio(choices=model_names, type="value", value=model_names[1], label="Model")
max_num_faces = gr.Slider(minimum=1, maximum=20, step=1, value=10, label="Max Number of Faces")
run_button = gr.Button()
with gr.Column():
result = gr.Image(label="Output")
gr.Examples(
examples=[[path.as_posix(), model_names[1], 10] for path in pathlib.Path("images").rglob("*.jpg")],
inputs=[image, model_name, max_num_faces],
outputs=result,
fn=predict,
)
run_button.click(
fn=predict,
inputs=[image, model_name, max_num_faces],
outputs=result,
api_name="predict",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()