hysts's picture
hysts HF staff
Update
7ad735d
raw
history blame
3.44 kB
#!/usr/bin/env python
from __future__ import annotations
import functools
import json
import os
import pathlib
import tarfile
from typing import Callable
import gradio as gr
import huggingface_hub
import PIL.Image
import torch
import torchvision.transforms as T
DESCRIPTION = '# [RF5/danbooru-pretrained](https://github.com/RF5/danbooru-pretrained)'
MODEL_REPO = 'public-data/danbooru-pretrained'
def load_sample_image_paths() -> list[pathlib.Path]:
image_dir = pathlib.Path('images')
if not image_dir.exists():
dataset_repo = 'hysts/sample-images-TADNE'
path = huggingface_hub.hf_hub_download(dataset_repo,
'images.tar.gz',
repo_type='dataset')
with tarfile.open(path) as f:
f.extractall()
return sorted(image_dir.glob('*'))
def load_model(device: torch.device) -> torch.nn.Module:
path = huggingface_hub.hf_hub_download(MODEL_REPO, 'resnet50-13306192.pth')
state_dict = torch.load(path)
model = torch.hub.load('RF5/danbooru-pretrained',
'resnet50',
pretrained=False)
model.load_state_dict(state_dict)
model.to(device)
model.eval()
return model
def load_labels() -> list[str]:
path = huggingface_hub.hf_hub_download(MODEL_REPO, 'class_names_6000.json')
with open(path) as f:
labels = json.load(f)
return labels
@torch.inference_mode()
def predict(image: PIL.Image.Image, score_threshold: float,
transform: Callable, device: torch.device, model: torch.nn.Module,
labels: list[str]) -> dict[str, float]:
data = transform(image)
data = data.to(device).unsqueeze(0)
preds = model(data)[0]
preds = torch.sigmoid(preds)
preds = preds.cpu().numpy().astype(float)
res = dict()
for prob, label in zip(preds.tolist(), labels):
if prob < score_threshold:
continue
res[label] = prob
return res
image_paths = load_sample_image_paths()
examples = [[path.as_posix(), 0.4] for path in image_paths]
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model = load_model(device)
labels = load_labels()
transform = T.Compose([
T.Resize(360),
T.ToTensor(),
T.Normalize(mean=[0.7137, 0.6628, 0.6519], std=[0.2970, 0.3017, 0.2979]),
])
fn = functools.partial(predict,
transform=transform,
device=device,
model=model,
labels=labels)
with gr.Blocks(css='style.css') as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
image = gr.Image(label='Input', type='pil')
threshold = gr.Slider(label='Score Threshold',
minimum=0,
maximum=1,
step=0.05,
value=0.4)
run_button = gr.Button('Run')
with gr.Column():
result = gr.Label(label='Output')
inputs = [image, threshold]
gr.Examples(examples=examples,
inputs=inputs,
outputs=result,
fn=fn,
cache_examples=os.getenv('CACHE_EXAMPLES') == '1')
run_button.click(fn=fn, inputs=inputs, outputs=result, api_name='predict')
demo.queue(max_size=15).launch()