Add files
Browse files- .gitmodules +3 -0
- anime_face_landmark_detection +1 -0
- app.py +175 -0
- requirements.txt +3 -0
.gitmodules
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[submodule "anime_face_landmark_detection"]
|
2 |
+
path = anime_face_landmark_detection
|
3 |
+
url = https://github.com/kanosawa/anime_face_landmark_detection
|
anime_face_landmark_detection
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit 95231f3884fc531273c731ce4d8f583b61e5530d
|
app.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import argparse
|
6 |
+
import functools
|
7 |
+
import os
|
8 |
+
import pathlib
|
9 |
+
import sys
|
10 |
+
import tarfile
|
11 |
+
import urllib
|
12 |
+
from typing import Callable
|
13 |
+
|
14 |
+
sys.path.insert(0, 'anime_face_landmark_detection')
|
15 |
+
|
16 |
+
import cv2
|
17 |
+
import gradio as gr
|
18 |
+
import huggingface_hub
|
19 |
+
import numpy as np
|
20 |
+
import PIL.Image
|
21 |
+
import torch
|
22 |
+
import torchvision.transforms as T
|
23 |
+
from CFA import CFA
|
24 |
+
|
25 |
+
TOKEN = os.environ['TOKEN']
|
26 |
+
|
27 |
+
MODEL_REPO = 'hysts/anime_face_landmark_detection'
|
28 |
+
MODEL_FILENAME = 'checkpoint_landmark_191116.pth'
|
29 |
+
|
30 |
+
NUM_LANDMARK = 24
|
31 |
+
CROP_SIZE = 128
|
32 |
+
|
33 |
+
|
34 |
+
def parse_args() -> argparse.Namespace:
|
35 |
+
parser = argparse.ArgumentParser()
|
36 |
+
parser.add_argument('--device', type=str, default='cpu')
|
37 |
+
parser.add_argument('--theme', type=str)
|
38 |
+
parser.add_argument('--live', action='store_true')
|
39 |
+
parser.add_argument('--share', action='store_true')
|
40 |
+
parser.add_argument('--port', type=int)
|
41 |
+
parser.add_argument('--disable-queue',
|
42 |
+
dest='enable_queue',
|
43 |
+
action='store_false')
|
44 |
+
parser.add_argument('--allow-flagging', type=str, default='never')
|
45 |
+
parser.add_argument('--allow-screenshot', action='store_true')
|
46 |
+
return parser.parse_args()
|
47 |
+
|
48 |
+
|
49 |
+
def load_sample_image_paths() -> list[pathlib.Path]:
|
50 |
+
image_dir = pathlib.Path('images')
|
51 |
+
if not image_dir.exists():
|
52 |
+
dataset_repo = 'hysts/sample-images-TADNE'
|
53 |
+
path = huggingface_hub.hf_hub_download(dataset_repo,
|
54 |
+
'images.tar.gz',
|
55 |
+
repo_type='dataset',
|
56 |
+
use_auth_token=TOKEN)
|
57 |
+
with tarfile.open(path) as f:
|
58 |
+
f.extractall()
|
59 |
+
return sorted(image_dir.glob('*'))
|
60 |
+
|
61 |
+
|
62 |
+
def load_face_detector() -> cv2.CascadeClassifier:
|
63 |
+
url = 'https://raw.githubusercontent.com/nagadomi/lbpcascade_animeface/master/lbpcascade_animeface.xml'
|
64 |
+
path = pathlib.Path('lbpcascade_animeface.xml')
|
65 |
+
if not path.exists():
|
66 |
+
urllib.request.urlretrieve(url, path.as_posix())
|
67 |
+
return cv2.CascadeClassifier(path.as_posix())
|
68 |
+
|
69 |
+
|
70 |
+
def load_landmark_detector(device: torch.device) -> torch.nn.Module:
|
71 |
+
path = huggingface_hub.hf_hub_download(MODEL_REPO,
|
72 |
+
MODEL_FILENAME,
|
73 |
+
use_auth_token=TOKEN)
|
74 |
+
model = CFA(output_channel_num=NUM_LANDMARK + 1, checkpoint_name=path)
|
75 |
+
model.to(device)
|
76 |
+
model.eval()
|
77 |
+
return model
|
78 |
+
|
79 |
+
|
80 |
+
@torch.inference_mode()
|
81 |
+
def detect(image, face_detector: cv2.CascadeClassifier, device: torch.device,
|
82 |
+
transform: Callable,
|
83 |
+
landmark_detector: torch.nn.Module) -> np.ndarray:
|
84 |
+
image = cv2.imread(image.name)
|
85 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
86 |
+
preds = face_detector.detectMultiScale(gray,
|
87 |
+
scaleFactor=1.1,
|
88 |
+
minNeighbors=5,
|
89 |
+
minSize=(24, 24))
|
90 |
+
|
91 |
+
image_h, image_w = image.shape[:2]
|
92 |
+
pil_image = PIL.Image.fromarray(image[:, :, ::-1].copy())
|
93 |
+
|
94 |
+
res = image.copy()
|
95 |
+
for x_orig, y_orig, w_orig, h_orig in preds:
|
96 |
+
|
97 |
+
x0 = round(max(x_orig - w_orig / 8, 0))
|
98 |
+
x1 = round(min(x_orig + w_orig * 9 / 8, image_w))
|
99 |
+
y0 = round(max(y_orig - h_orig / 4, 0))
|
100 |
+
y1 = y_orig + h_orig
|
101 |
+
w = x1 - x0
|
102 |
+
h = y1 - y0
|
103 |
+
|
104 |
+
temp = pil_image.crop((x0, y0, x1, y1))
|
105 |
+
temp = temp.resize((CROP_SIZE, CROP_SIZE), PIL.Image.BICUBIC)
|
106 |
+
data = transform(temp)
|
107 |
+
data = data.to(device).unsqueeze(0)
|
108 |
+
|
109 |
+
heatmaps = landmark_detector(data)
|
110 |
+
heatmaps = heatmaps[-1].cpu().numpy()[0]
|
111 |
+
|
112 |
+
cv2.rectangle(res, (x0, y0), (x1, y1), (0, 255, 0), 2)
|
113 |
+
|
114 |
+
for i in range(NUM_LANDMARK):
|
115 |
+
heatmap = cv2.resize(heatmaps[i], (CROP_SIZE, CROP_SIZE),
|
116 |
+
interpolation=cv2.INTER_CUBIC)
|
117 |
+
pty, ptx = np.unravel_index(np.argmax(heatmap), heatmap.shape)
|
118 |
+
pt_crop = np.round(np.array([ptx * w, pty * h]) /
|
119 |
+
CROP_SIZE).astype(int)
|
120 |
+
pt = np.array([x0, y0]) + pt_crop
|
121 |
+
cv2.circle(res, tuple(pt), 2, (0, 0, 255), cv2.FILLED)
|
122 |
+
|
123 |
+
res = cv2.cvtColor(res, cv2.COLOR_BGR2RGB)
|
124 |
+
return res
|
125 |
+
|
126 |
+
|
127 |
+
def main():
|
128 |
+
gr.close_all()
|
129 |
+
|
130 |
+
args = parse_args()
|
131 |
+
device = torch.device(args.device)
|
132 |
+
|
133 |
+
image_paths = load_sample_image_paths()
|
134 |
+
examples = [[path.as_posix()] for path in image_paths]
|
135 |
+
|
136 |
+
face_detector = load_face_detector()
|
137 |
+
landmark_detector = load_landmark_detector(device)
|
138 |
+
transform = T.Compose([
|
139 |
+
T.ToTensor(),
|
140 |
+
T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
141 |
+
])
|
142 |
+
|
143 |
+
func = functools.partial(detect,
|
144 |
+
face_detector=face_detector,
|
145 |
+
device=device,
|
146 |
+
transform=transform,
|
147 |
+
landmark_detector=landmark_detector)
|
148 |
+
func = functools.update_wrapper(func, detect)
|
149 |
+
|
150 |
+
repo_url = 'https://github.com/kanosawa/anime_face_landmark_detection'
|
151 |
+
title = 'kanosawa/anime_face_landmark_detection'
|
152 |
+
description = f'A demo for {repo_url}'
|
153 |
+
article = None
|
154 |
+
|
155 |
+
gr.Interface(
|
156 |
+
func,
|
157 |
+
gr.inputs.Image(type='file', label='Input'),
|
158 |
+
gr.outputs.Image(label='Output'),
|
159 |
+
theme=args.theme,
|
160 |
+
title=title,
|
161 |
+
description=description,
|
162 |
+
article=article,
|
163 |
+
examples=examples,
|
164 |
+
allow_screenshot=args.allow_screenshot,
|
165 |
+
allow_flagging=args.allow_flagging,
|
166 |
+
live=args.live,
|
167 |
+
).launch(
|
168 |
+
enable_queue=args.enable_queue,
|
169 |
+
server_port=args.port,
|
170 |
+
share=args.share,
|
171 |
+
)
|
172 |
+
|
173 |
+
|
174 |
+
if __name__ == '__main__':
|
175 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
opencv-python-headless>=4.5.5.62
|
2 |
+
torch>=1.10.1
|
3 |
+
torchvision>=0.11.2
|