|
|
|
|
|
from __future__ import annotations |
|
|
|
import functools |
|
import os |
|
import pathlib |
|
import sys |
|
import tarfile |
|
import urllib.request |
|
from typing import Callable |
|
|
|
import cv2 |
|
import gradio as gr |
|
import huggingface_hub |
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
import torchvision.transforms as T |
|
|
|
sys.path.insert(0, "anime_face_landmark_detection") |
|
|
|
from CFA import CFA |
|
|
|
DESCRIPTION = "# [kanosawa/anime_face_landmark_detection](https://github.com/kanosawa/anime_face_landmark_detection)" |
|
|
|
NUM_LANDMARK = 24 |
|
CROP_SIZE = 128 |
|
|
|
|
|
def load_sample_image_paths() -> list[pathlib.Path]: |
|
image_dir = pathlib.Path("images") |
|
if not image_dir.exists(): |
|
dataset_repo = "hysts/sample-images-TADNE" |
|
path = huggingface_hub.hf_hub_download(dataset_repo, "images.tar.gz", repo_type="dataset") |
|
with tarfile.open(path) as f: |
|
f.extractall() |
|
return sorted(image_dir.glob("*")) |
|
|
|
|
|
def load_face_detector() -> cv2.CascadeClassifier: |
|
url = "https://raw.githubusercontent.com/nagadomi/lbpcascade_animeface/master/lbpcascade_animeface.xml" |
|
path = pathlib.Path("lbpcascade_animeface.xml") |
|
if not path.exists(): |
|
urllib.request.urlretrieve(url, path.as_posix()) |
|
return cv2.CascadeClassifier(path.as_posix()) |
|
|
|
|
|
def load_landmark_detector(device: torch.device) -> torch.nn.Module: |
|
path = huggingface_hub.hf_hub_download( |
|
"public-data/anime_face_landmark_detection", "checkpoint_landmark_191116.pth" |
|
) |
|
model = CFA(output_channel_num=NUM_LANDMARK + 1, checkpoint_name=path) |
|
model.to(device) |
|
model.eval() |
|
return model |
|
|
|
|
|
@torch.inference_mode() |
|
def detect( |
|
image_path: str, |
|
face_detector: cv2.CascadeClassifier, |
|
device: torch.device, |
|
transform: Callable, |
|
landmark_detector: torch.nn.Module, |
|
) -> np.ndarray: |
|
image = cv2.imread(image_path) |
|
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) |
|
preds = face_detector.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(24, 24)) |
|
|
|
image_h, image_w = image.shape[:2] |
|
pil_image = PIL.Image.fromarray(image[:, :, ::-1].copy()) |
|
|
|
res = image.copy() |
|
for x_orig, y_orig, w_orig, h_orig in preds: |
|
|
|
x0 = round(max(x_orig - w_orig / 8, 0)) |
|
x1 = round(min(x_orig + w_orig * 9 / 8, image_w)) |
|
y0 = round(max(y_orig - h_orig / 4, 0)) |
|
y1 = y_orig + h_orig |
|
w = x1 - x0 |
|
h = y1 - y0 |
|
|
|
temp = pil_image.crop((x0, y0, x1, y1)) |
|
temp = temp.resize((CROP_SIZE, CROP_SIZE), PIL.Image.BICUBIC) |
|
data = transform(temp) |
|
data = data.to(device).unsqueeze(0) |
|
|
|
heatmaps = landmark_detector(data) |
|
heatmaps = heatmaps[-1].cpu().numpy()[0] |
|
|
|
cv2.rectangle(res, (x0, y0), (x1, y1), (0, 255, 0), 2) |
|
|
|
for i in range(NUM_LANDMARK): |
|
heatmap = cv2.resize(heatmaps[i], (CROP_SIZE, CROP_SIZE), interpolation=cv2.INTER_CUBIC) |
|
pty, ptx = np.unravel_index(np.argmax(heatmap), heatmap.shape) |
|
pt_crop = np.round(np.array([ptx * w, pty * h]) / CROP_SIZE).astype(int) |
|
pt = np.array([x0, y0]) + pt_crop |
|
cv2.circle(res, tuple(pt), 2, (0, 0, 255), cv2.FILLED) |
|
|
|
return res[:, :, ::-1] |
|
|
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
image_paths = load_sample_image_paths() |
|
examples = [[path.as_posix()] for path in image_paths] |
|
|
|
face_detector = load_face_detector() |
|
landmark_detector = load_landmark_detector(device) |
|
transform = T.Compose( |
|
[ |
|
T.ToTensor(), |
|
T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), |
|
] |
|
) |
|
|
|
fn = functools.partial( |
|
detect, |
|
face_detector=face_detector, |
|
device=device, |
|
transform=transform, |
|
landmark_detector=landmark_detector, |
|
) |
|
|
|
with gr.Blocks(css="style.css") as demo: |
|
gr.Markdown(DESCRIPTION) |
|
with gr.Row(): |
|
with gr.Column(): |
|
image = gr.Image(label="Input", type="filepath") |
|
run_button = gr.Button("Run") |
|
with gr.Column(): |
|
result = gr.Image(label="Result") |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=image, |
|
outputs=result, |
|
fn=fn, |
|
cache_examples=os.getenv("CACHE_EXAMPLES") == "1", |
|
) |
|
run_button.click( |
|
fn=fn, |
|
inputs=image, |
|
outputs=result, |
|
api_name="predict", |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=15).launch() |
|
|