hysts's picture
hysts HF staff
Update
0654980
raw
history blame
4.38 kB
#!/usr/bin/env python
from __future__ import annotations
import functools
import os
import pathlib
import sys
import tarfile
import urllib.request
from typing import Callable
import cv2
import gradio as gr
import huggingface_hub
import numpy as np
import PIL.Image
import torch
import torchvision.transforms as T
sys.path.insert(0, "anime_face_landmark_detection")
from CFA import CFA
DESCRIPTION = "# [kanosawa/anime_face_landmark_detection](https://github.com/kanosawa/anime_face_landmark_detection)"
NUM_LANDMARK = 24
CROP_SIZE = 128
def load_sample_image_paths() -> list[pathlib.Path]:
image_dir = pathlib.Path("images")
if not image_dir.exists():
dataset_repo = "hysts/sample-images-TADNE"
path = huggingface_hub.hf_hub_download(dataset_repo, "images.tar.gz", repo_type="dataset")
with tarfile.open(path) as f:
f.extractall()
return sorted(image_dir.glob("*"))
def load_face_detector() -> cv2.CascadeClassifier:
url = "https://raw.githubusercontent.com/nagadomi/lbpcascade_animeface/master/lbpcascade_animeface.xml"
path = pathlib.Path("lbpcascade_animeface.xml")
if not path.exists():
urllib.request.urlretrieve(url, path.as_posix())
return cv2.CascadeClassifier(path.as_posix())
def load_landmark_detector(device: torch.device) -> torch.nn.Module:
path = huggingface_hub.hf_hub_download(
"public-data/anime_face_landmark_detection", "checkpoint_landmark_191116.pth"
)
model = CFA(output_channel_num=NUM_LANDMARK + 1, checkpoint_name=path)
model.to(device)
model.eval()
return model
@torch.inference_mode()
def detect(
image_path: str,
face_detector: cv2.CascadeClassifier,
device: torch.device,
transform: Callable,
landmark_detector: torch.nn.Module,
) -> np.ndarray:
image = cv2.imread(image_path)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
preds = face_detector.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(24, 24))
image_h, image_w = image.shape[:2]
pil_image = PIL.Image.fromarray(image[:, :, ::-1].copy())
res = image.copy()
for x_orig, y_orig, w_orig, h_orig in preds:
x0 = round(max(x_orig - w_orig / 8, 0))
x1 = round(min(x_orig + w_orig * 9 / 8, image_w))
y0 = round(max(y_orig - h_orig / 4, 0))
y1 = y_orig + h_orig
w = x1 - x0
h = y1 - y0
temp = pil_image.crop((x0, y0, x1, y1))
temp = temp.resize((CROP_SIZE, CROP_SIZE), PIL.Image.BICUBIC)
data = transform(temp)
data = data.to(device).unsqueeze(0)
heatmaps = landmark_detector(data)
heatmaps = heatmaps[-1].cpu().numpy()[0]
cv2.rectangle(res, (x0, y0), (x1, y1), (0, 255, 0), 2)
for i in range(NUM_LANDMARK):
heatmap = cv2.resize(heatmaps[i], (CROP_SIZE, CROP_SIZE), interpolation=cv2.INTER_CUBIC)
pty, ptx = np.unravel_index(np.argmax(heatmap), heatmap.shape)
pt_crop = np.round(np.array([ptx * w, pty * h]) / CROP_SIZE).astype(int)
pt = np.array([x0, y0]) + pt_crop
cv2.circle(res, tuple(pt), 2, (0, 0, 255), cv2.FILLED)
return res[:, :, ::-1]
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
image_paths = load_sample_image_paths()
examples = [[path.as_posix()] for path in image_paths]
face_detector = load_face_detector()
landmark_detector = load_landmark_detector(device)
transform = T.Compose(
[
T.ToTensor(),
T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
]
)
fn = functools.partial(
detect,
face_detector=face_detector,
device=device,
transform=transform,
landmark_detector=landmark_detector,
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
image = gr.Image(label="Input", type="filepath")
run_button = gr.Button("Run")
with gr.Column():
result = gr.Image(label="Result")
gr.Examples(
examples=examples,
inputs=image,
outputs=result,
fn=fn,
cache_examples=os.getenv("CACHE_EXAMPLES") == "1",
)
run_button.click(
fn=fn,
inputs=image,
outputs=result,
api_name="predict",
)
if __name__ == "__main__":
demo.queue(max_size=15).launch()