hysts's picture
hysts HF staff
Update
4569f2f
raw
history blame
4.3 kB
#!/usr/bin/env python
import functools
import os
import pathlib
import cv2
import dlib
import gradio as gr
import huggingface_hub
import numpy as np
import pretrainedmodels
import torch
import torch.nn as nn
import torch.nn.functional as F
DESCRIPTION = '# [Age Estimation](https://github.com/yu4u/age-estimation-pytorch)'
def get_model(model_name='se_resnext50_32x4d',
num_classes=101,
pretrained='imagenet'):
model = pretrainedmodels.__dict__[model_name](pretrained=pretrained)
dim_feats = model.last_linear.in_features
model.last_linear = nn.Linear(dim_feats, num_classes)
model.avg_pool = nn.AdaptiveAvgPool2d(1)
return model
def load_model(device):
model = get_model(model_name='se_resnext50_32x4d', pretrained=None)
path = huggingface_hub.hf_hub_download(
'public-data/yu4u-age-estimation-pytorch', 'pretrained.pth')
model.load_state_dict(torch.load(path))
model = model.to(device)
model.eval()
return model
def load_image(path):
image = cv2.imread(path)
h_orig, w_orig = image.shape[:2]
size = max(h_orig, w_orig)
scale = 640 / size
w, h = int(w_orig * scale), int(h_orig * scale)
image = cv2.resize(image, (w, h))
return image
def draw_label(image,
point,
label,
font=cv2.FONT_HERSHEY_SIMPLEX,
font_scale=0.8,
thickness=1):
size = cv2.getTextSize(label, font, font_scale, thickness)[0]
x, y = point
cv2.rectangle(image, (x, y - size[1]), (x + size[0], y), (255, 0, 0),
cv2.FILLED)
cv2.putText(image,
label,
point,
font,
font_scale, (255, 255, 255),
thickness,
lineType=cv2.LINE_AA)
@torch.inference_mode()
def predict(image, model, face_detector, device, margin=0.4, input_size=224):
image = cv2.imread(image, cv2.IMREAD_COLOR)[:, :, ::-1].copy()
image_h, image_w = image.shape[:2]
# detect faces using dlib detector
detected = face_detector(image, 1)
faces = np.empty((len(detected), input_size, input_size, 3))
if len(detected) > 0:
for i, d in enumerate(detected):
x1, y1, x2, y2, w, h = d.left(), d.top(
), d.right() + 1, d.bottom() + 1, d.width(), d.height()
xw1 = max(int(x1 - margin * w), 0)
yw1 = max(int(y1 - margin * h), 0)
xw2 = min(int(x2 + margin * w), image_w - 1)
yw2 = min(int(y2 + margin * h), image_h - 1)
faces[i] = cv2.resize(image[yw1:yw2 + 1, xw1:xw2 + 1],
(input_size, input_size))
cv2.rectangle(image, (x1, y1), (x2, y2), (255, 255, 255), 2)
cv2.rectangle(image, (xw1, yw1), (xw2, yw2), (255, 0, 0), 2)
# predict ages
inputs = torch.from_numpy(
np.transpose(faces.astype(np.float32), (0, 3, 1, 2))).to(device)
outputs = F.softmax(model(inputs), dim=-1).cpu().numpy()
ages = np.arange(0, 101)
predicted_ages = (outputs * ages).sum(axis=-1)
# draw results
for age, d in zip(predicted_ages, detected):
draw_label(image, (d.left(), d.top()), f'{int(age)}')
return image
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model = load_model(device)
face_detector = dlib.get_frontal_face_detector()
fn = functools.partial(predict,
model=model,
face_detector=face_detector,
device=device)
image_dir = pathlib.Path('sample_images')
examples = [path.as_posix() for path in sorted(image_dir.glob('*.jpg'))]
with gr.Blocks(css='style.css') as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
image = gr.Image(label='Input', type='filepath')
run_button = gr.Button('Run')
with gr.Column():
result = gr.Image(label='Result')
gr.Examples(examples=examples,
inputs=image,
outputs=result,
fn=fn,
cache_examples=os.getenv('CACHE_EXAMPLES') == '1')
run_button.click(fn=fn, inputs=image, outputs=result, api_name='predict')
demo.queue(max_size=15).launch()