Spaces:
Running
Running
#!/usr/bin/env python | |
from __future__ import annotations | |
import pathlib | |
import tarfile | |
import gradio as gr | |
from model import AppModel | |
DESCRIPTION = '''# [ViTPose](https://github.com/ViTAE-Transformer/ViTPose) | |
Related app: [https://huggingface.co/spaces/Gradio-Blocks/ViTPose](https://huggingface.co/spaces/Gradio-Blocks/ViTPose) | |
''' | |
def extract_tar() -> None: | |
if pathlib.Path('mmdet_configs/configs').exists(): | |
return | |
with tarfile.open('mmdet_configs/configs.tar') as f: | |
f.extractall('mmdet_configs') | |
extract_tar() | |
model = AppModel() | |
with gr.Blocks(css='style.css') as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Row(): | |
with gr.Column(): | |
input_video = gr.Video(label='Input Video', | |
format='mp4', | |
elem_id='input_video') | |
detector_name = gr.Dropdown(label='Detector', | |
choices=list( | |
model.det_model.MODEL_DICT.keys()), | |
value=model.det_model.model_name) | |
pose_model_name = gr.Dropdown( | |
label='Pose Model', | |
choices=list(model.pose_model.MODEL_DICT.keys()), | |
value=model.pose_model.model_name) | |
det_score_threshold = gr.Slider(label='Box Score Threshold', | |
minimum=0, | |
maximum=1, | |
step=0.05, | |
value=0.5) | |
max_num_frames = gr.Slider(label='Maximum Number of Frames', | |
minimum=1, | |
maximum=300, | |
step=1, | |
value=60) | |
predict_button = gr.Button('Predict') | |
pose_preds = gr.Variable() | |
paths = sorted(pathlib.Path('videos').rglob('*.mp4')) | |
gr.Examples(examples=[[path.as_posix()] for path in paths], | |
inputs=input_video) | |
with gr.Column(): | |
result = gr.Video(label='Result', format='mp4', elem_id='result') | |
vis_kpt_score_threshold = gr.Slider( | |
label='Visualization Score Threshold', | |
minimum=0, | |
maximum=1, | |
step=0.05, | |
value=0.3) | |
vis_dot_radius = gr.Slider(label='Dot Radius', | |
minimum=1, | |
maximum=10, | |
step=1, | |
value=4) | |
vis_line_thickness = gr.Slider(label='Line Thickness', | |
minimum=1, | |
maximum=10, | |
step=1, | |
value=2) | |
redraw_button = gr.Button('Redraw') | |
detector_name.change(fn=model.det_model.set_model, inputs=detector_name) | |
pose_model_name.change(fn=model.pose_model.set_model, | |
inputs=pose_model_name) | |
predict_button.click(fn=model.run, | |
inputs=[ | |
input_video, | |
detector_name, | |
pose_model_name, | |
det_score_threshold, | |
max_num_frames, | |
vis_kpt_score_threshold, | |
vis_dot_radius, | |
vis_line_thickness, | |
], | |
outputs=[ | |
result, | |
pose_preds, | |
]) | |
redraw_button.click(fn=model.visualize_pose_results, | |
inputs=[ | |
input_video, | |
pose_preds, | |
vis_kpt_score_threshold, | |
vis_dot_radius, | |
vis_line_thickness, | |
], | |
outputs=result) | |
demo.queue(max_size=10).launch() | |