|
|
|
|
|
from __future__ import annotations |
|
|
|
import argparse |
|
import functools |
|
import os |
|
import sys |
|
|
|
if os.environ.get('SYSTEM') == 'spaces': |
|
os.system("sed -i '14,21d' StyleSwin/op/fused_act.py") |
|
os.system("sed -i '12,19d' StyleSwin/op/upfirdn2d.py") |
|
|
|
sys.path.insert(0, 'StyleSwin') |
|
|
|
import gradio as gr |
|
import huggingface_hub |
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
import torch.nn as nn |
|
from models.generator import Generator |
|
|
|
REPO_URL = 'https://github.com/microsoft/StyleSwin' |
|
TITLE = 'microsoft/StyleSwin' |
|
DESCRIPTION = f'A demo for {REPO_URL}' |
|
SAMPLE_IMAGE_DIR = 'https://huggingface.co/spaces/hysts/StyleSwin/resolve/main/samples' |
|
ARTICLE = f'''## Generated images |
|
### CelebA-HQ |
|
- size: 1024x1024 |
|
- seed: 0-99 |
|
![CelebA-HQ samples]({SAMPLE_IMAGE_DIR}/celeba-hq.jpg) |
|
### FFHQ |
|
- size: 1024x1024 |
|
- seed: 0-99 |
|
![FFHQ samples]({SAMPLE_IMAGE_DIR}/ffhq.jpg) |
|
### LSUN Church |
|
- size: 256x256 |
|
- seed: 0-99 |
|
![LSUN Church samples]({SAMPLE_IMAGE_DIR}/lsun-church.jpg) |
|
''' |
|
|
|
TOKEN = os.environ['TOKEN'] |
|
|
|
MODEL_REPO = 'hysts/StyleSwin' |
|
MODEL_NAMES = [ |
|
'CelebAHQ_256', |
|
'FFHQ_256', |
|
'LSUNChurch_256', |
|
'CelebAHQ_1024', |
|
'FFHQ_1024', |
|
] |
|
|
|
|
|
def parse_args() -> argparse.Namespace: |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--device', type=str, default='cpu') |
|
parser.add_argument('--theme', type=str) |
|
parser.add_argument('--live', action='store_true') |
|
parser.add_argument('--share', action='store_true') |
|
parser.add_argument('--port', type=int) |
|
parser.add_argument('--disable-queue', |
|
dest='enable_queue', |
|
action='store_false') |
|
parser.add_argument('--allow-flagging', type=str, default='never') |
|
parser.add_argument('--allow-screenshot', action='store_true') |
|
return parser.parse_args() |
|
|
|
|
|
def load_model(model_name: str, device: torch.device) -> nn.Module: |
|
size = int(model_name.split('_')[1]) |
|
channel_multiplier = 1 if size == 1024 else 2 |
|
model = Generator(size, |
|
style_dim=512, |
|
n_mlp=8, |
|
channel_multiplier=channel_multiplier) |
|
ckpt_path = huggingface_hub.hf_hub_download(MODEL_REPO, |
|
f'models/{model_name}.pt', |
|
use_auth_token=TOKEN) |
|
ckpt = torch.load(ckpt_path) |
|
model.load_state_dict(ckpt['g_ema']) |
|
model.to(device) |
|
model.eval() |
|
return model |
|
|
|
|
|
def generate_z(seed: int, device: torch.device) -> torch.Tensor: |
|
return torch.from_numpy(np.random.RandomState(seed).randn( |
|
1, 512)).to(device).float() |
|
|
|
|
|
def postprocess(tensors: torch.Tensor) -> torch.Tensor: |
|
assert tensors.dim() == 4 |
|
tensors = tensors.cpu() |
|
std = torch.FloatTensor([0.229, 0.224, 0.225])[None, :, None, None] |
|
mean = torch.FloatTensor([0.485, 0.456, 0.406])[None, :, None, None] |
|
tensors = tensors * std + mean |
|
tensors = (tensors * 255).clamp(0, 255).to(torch.uint8) |
|
return tensors |
|
|
|
|
|
@torch.inference_mode() |
|
def generate_image(model_name: str, seed: int, model_dict: dict, |
|
device: torch.device) -> PIL.Image.Image: |
|
model = model_dict[model_name] |
|
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max)) |
|
z = generate_z(seed, device) |
|
out, _ = model(z) |
|
out = postprocess(out) |
|
out = out.numpy()[0].transpose(1, 2, 0) |
|
return PIL.Image.fromarray(out, 'RGB') |
|
|
|
|
|
def main(): |
|
gr.close_all() |
|
|
|
args = parse_args() |
|
device = torch.device(args.device) |
|
|
|
model_dict = {name: load_model(name, device) for name in MODEL_NAMES} |
|
|
|
func = functools.partial(generate_image, |
|
model_dict=model_dict, |
|
device=device) |
|
func = functools.update_wrapper(func, generate_image) |
|
|
|
gr.Interface( |
|
func, |
|
[ |
|
gr.inputs.Radio(MODEL_NAMES, |
|
type='value', |
|
default='FFHQ_256', |
|
label='Model', |
|
optional=False), |
|
gr.inputs.Slider(0, 2147483647, step=1, default=0, label='Seed'), |
|
], |
|
gr.outputs.Image(type='pil', label='Output'), |
|
title=TITLE, |
|
description=DESCRIPTION, |
|
article=ARTICLE, |
|
theme=args.theme, |
|
allow_screenshot=args.allow_screenshot, |
|
allow_flagging=args.allow_flagging, |
|
live=args.live, |
|
).launch( |
|
enable_queue=args.enable_queue, |
|
server_port=args.port, |
|
share=args.share, |
|
) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|