Spaces:
Running
Running
#!/usr/bin/env python | |
from __future__ import annotations | |
import functools | |
import os | |
import gradio as gr | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from huggingface_hub import hf_hub_download | |
from model import Model | |
TITLE = 'MobileStyleGAN' | |
DESCRIPTION = 'This is an unofficial demo for https://github.com/bes-dev/MobileStyleGAN.pytorch.' | |
SAMPLE_IMAGE_DIR = 'https://huggingface.co/spaces/hysts/MobileStyleGAN/resolve/main/samples' | |
ARTICLE = f'''## Generated images | |
### FFHQ | |
- size: 1024x1024 | |
- seed: 0-99 | |
- truncation: 1.0 | |
![FFHQ]({SAMPLE_IMAGE_DIR}/ffhq.jpg) | |
''' | |
HF_TOKEN = os.getenv('HF_TOKEN') | |
def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor: | |
return torch.from_numpy(np.random.RandomState(seed).randn( | |
1, z_dim)).to(device).float() | |
def generate_image(seed: int, truncation_psi: float, generator: str, | |
model: nn.Module, device: torch.device) -> np.ndarray: | |
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max)) | |
z = generate_z(model.mapping_net.style_dim, seed, device) | |
out = model(z, truncation_psi=truncation_psi, generator=generator) | |
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) | |
return out[0].cpu().numpy() | |
def load_model(device: torch.device) -> nn.Module: | |
path = hf_hub_download('hysts/MobileStyleGAN', | |
'models/mobilestylegan_ffhq_v2.pth', | |
use_auth_token=HF_TOKEN) | |
ckpt = torch.load(path) | |
model = Model() | |
model.load_state_dict(ckpt['state_dict'], strict=False) | |
model.eval() | |
model.to(device) | |
with torch.inference_mode(): | |
z = torch.zeros((1, model.mapping_net.style_dim)).to(device) | |
model(z) | |
return model | |
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') | |
model = load_model(device) | |
func = functools.partial(generate_image, model=model, device=device) | |
gr.Interface( | |
fn=func, | |
inputs=[ | |
gr.Slider(label='Seed', | |
minimum=0, | |
maximum=100000, | |
step=1, | |
value=0, | |
randomize=True), | |
gr.Slider(label='Truncation psi', | |
minimum=0, | |
maximum=2, | |
step=0.05, | |
value=1.0), | |
gr.Radio(label='Generator', | |
choices=['student', 'teacher'], | |
type='value', | |
value='student'), | |
], | |
outputs=gr.Image(label='Output', type='numpy'), | |
title=TITLE, | |
description=DESCRIPTION, | |
article=ARTICLE, | |
).queue().launch(show_api=False) | |