MobileStyleGAN / app.py
hysts's picture
hysts HF staff
Update
83321d4
raw
history blame
2.63 kB
#!/usr/bin/env python
from __future__ import annotations
import functools
import os
import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from model import Model
TITLE = 'MobileStyleGAN'
DESCRIPTION = 'This is an unofficial demo for https://github.com/bes-dev/MobileStyleGAN.pytorch.'
SAMPLE_IMAGE_DIR = 'https://huggingface.co/spaces/hysts/MobileStyleGAN/resolve/main/samples'
ARTICLE = f'''## Generated images
### FFHQ
- size: 1024x1024
- seed: 0-99
- truncation: 1.0
![FFHQ]({SAMPLE_IMAGE_DIR}/ffhq.jpg)
'''
HF_TOKEN = os.getenv('HF_TOKEN')
def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor:
return torch.from_numpy(np.random.RandomState(seed).randn(
1, z_dim)).to(device).float()
@torch.inference_mode()
def generate_image(seed: int, truncation_psi: float, generator: str,
model: nn.Module, device: torch.device) -> np.ndarray:
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
z = generate_z(model.mapping_net.style_dim, seed, device)
out = model(z, truncation_psi=truncation_psi, generator=generator)
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
return out[0].cpu().numpy()
def load_model(device: torch.device) -> nn.Module:
path = hf_hub_download('hysts/MobileStyleGAN',
'models/mobilestylegan_ffhq_v2.pth',
use_auth_token=HF_TOKEN)
ckpt = torch.load(path)
model = Model()
model.load_state_dict(ckpt['state_dict'], strict=False)
model.eval()
model.to(device)
with torch.inference_mode():
z = torch.zeros((1, model.mapping_net.style_dim)).to(device)
model(z)
return model
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model = load_model(device)
func = functools.partial(generate_image, model=model, device=device)
gr.Interface(
fn=func,
inputs=[
gr.Slider(label='Seed',
minimum=0,
maximum=100000,
step=1,
value=0,
randomize=True),
gr.Slider(label='Truncation psi',
minimum=0,
maximum=2,
step=0.05,
value=1.0),
gr.Radio(label='Generator',
choices=['student', 'teacher'],
type='value',
value='student'),
],
outputs=gr.Image(label='Output', type='numpy'),
title=TITLE,
description=DESCRIPTION,
article=ARTICLE,
).queue().launch(show_api=False)