Spaces:
Runtime error
Runtime error
Add files
Browse files- README.md +1 -1
- app.py +144 -3
- requirements.txt +7 -0
README.md
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
---
|
2 |
-
license: mit
|
3 |
title: InstructBLIP
|
4 |
emoji: ⚡
|
5 |
colorFrom: red
|
@@ -9,6 +8,7 @@ sdk_version: 3.50.2
|
|
9 |
python_version: 3.10.13
|
10 |
app_file: app.py
|
11 |
pinned: false
|
|
|
12 |
---
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
|
|
2 |
title: InstructBLIP
|
3 |
emoji: ⚡
|
4 |
colorFrom: red
|
|
|
8 |
python_version: 3.10.13
|
9 |
app_file: app.py
|
10 |
pinned: false
|
11 |
+
license: mit
|
12 |
---
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,9 +1,150 @@
|
|
1 |
#!/usr/bin/env python
|
2 |
|
|
|
|
|
|
|
|
|
3 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
if __name__ == "__main__":
|
9 |
-
demo.queue().launch()
|
|
|
1 |
#!/usr/bin/env python
|
2 |
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import os
|
6 |
+
|
7 |
import gradio as gr
|
8 |
+
import PIL.Image
|
9 |
+
import spaces
|
10 |
+
import torch
|
11 |
+
from transformers import InstructBlipForConditionalGeneration, InstructBlipProcessor
|
12 |
+
|
13 |
+
DESCRIPTION = "# InstructBLIP"
|
14 |
+
|
15 |
+
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
|
16 |
+
|
17 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
+
|
19 |
+
model_id = "Salesforce/instructblip-vicuna-7b"
|
20 |
+
processor = InstructBlipProcessor.from_pretrained(model_id)
|
21 |
+
model = InstructBlipForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
|
22 |
+
|
23 |
+
|
24 |
+
@spaces.GPU
|
25 |
+
def run(
|
26 |
+
image: PIL.Image.Image,
|
27 |
+
prompt: str,
|
28 |
+
text_decoding_method: str = "Nucleus sampling",
|
29 |
+
num_beams: int = 5,
|
30 |
+
max_length: int = 256,
|
31 |
+
min_length: int = 1,
|
32 |
+
top_p: float = 0.9,
|
33 |
+
repetition_penalty: float = 1.5,
|
34 |
+
length_penalty: float = 1.0,
|
35 |
+
temperature: float = 1.0,
|
36 |
+
) -> str:
|
37 |
+
h, w = image.size
|
38 |
+
scale = MAX_IMAGE_SIZE / max(h, w)
|
39 |
+
if scale < 1:
|
40 |
+
new_w = int(w * scale)
|
41 |
+
new_h = int(h * scale)
|
42 |
+
image = image.resize((new_w, new_h), resample=PIL.Image.Resampling.LANCZOS)
|
43 |
+
|
44 |
+
inputs = processor(images=image, text=prompt, return_tensors="pt").to(device, torch.float16)
|
45 |
+
generated_ids = model.generate(
|
46 |
+
**inputs,
|
47 |
+
do_sample=text_decoding_method == "Nucleus sampling",
|
48 |
+
num_beams=num_beams,
|
49 |
+
max_length=max_length,
|
50 |
+
min_length=min_length,
|
51 |
+
top_p=top_p,
|
52 |
+
repetition_penalty=repetition_penalty,
|
53 |
+
length_penalty=length_penalty,
|
54 |
+
temperature=temperature,
|
55 |
+
)
|
56 |
+
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
|
57 |
+
return generated_caption
|
58 |
+
|
59 |
+
|
60 |
+
with gr.Blocks(css="style.css") as demo:
|
61 |
+
gr.Markdown(DESCRIPTION)
|
62 |
+
|
63 |
+
with gr.Row():
|
64 |
+
with gr.Column():
|
65 |
+
input_image = gr.Image(type="pil")
|
66 |
+
prompt = gr.Textbox(label="Prompt")
|
67 |
+
run_button = gr.Button()
|
68 |
+
with gr.Accordion(label="Advanced options", open=False):
|
69 |
+
text_decoding_method = gr.Radio(
|
70 |
+
label="Text Decoding Method",
|
71 |
+
choices=["Beam search", "Nucleus sampling"],
|
72 |
+
value="Nucleus sampling",
|
73 |
+
)
|
74 |
+
num_beams = gr.Slider(
|
75 |
+
label="Number of Beams",
|
76 |
+
minimum=1,
|
77 |
+
maximum=10,
|
78 |
+
step=1,
|
79 |
+
value=5,
|
80 |
+
)
|
81 |
+
max_length = gr.Slider(
|
82 |
+
label="Max Length",
|
83 |
+
minimum=1,
|
84 |
+
maximum=512,
|
85 |
+
step=1,
|
86 |
+
value=256,
|
87 |
+
)
|
88 |
+
min_length = gr.Slider(
|
89 |
+
label="Minimum Length",
|
90 |
+
minimum=1,
|
91 |
+
maximum=64,
|
92 |
+
step=1,
|
93 |
+
value=1,
|
94 |
+
)
|
95 |
+
top_p = gr.Slider(
|
96 |
+
label="Top P",
|
97 |
+
minimum=0.1,
|
98 |
+
maximum=1.0,
|
99 |
+
step=0.1,
|
100 |
+
value=0.9,
|
101 |
+
)
|
102 |
+
repetition_penalty = gr.Slider(
|
103 |
+
label="Repetition Penalty",
|
104 |
+
info="Larger value prevents repetition.",
|
105 |
+
minimum=1.0,
|
106 |
+
maximum=5.0,
|
107 |
+
step=0.5,
|
108 |
+
value=1.5,
|
109 |
+
)
|
110 |
+
length_penalty = gr.Slider(
|
111 |
+
label="Length Penalty",
|
112 |
+
info="Set to larger for longer sequence, used with beam search.",
|
113 |
+
minimum=-1.0,
|
114 |
+
maximum=2.0,
|
115 |
+
step=0.2,
|
116 |
+
value=1.0,
|
117 |
+
)
|
118 |
+
temperature = gr.Slider(
|
119 |
+
label="Temperature",
|
120 |
+
info="Used with nucleus sampling.",
|
121 |
+
minimum=0.5,
|
122 |
+
maximum=1.0,
|
123 |
+
step=0.1,
|
124 |
+
value=1.0,
|
125 |
+
)
|
126 |
+
|
127 |
+
with gr.Column():
|
128 |
+
output = gr.Textbox(label="Result")
|
129 |
|
130 |
+
gr.on(
|
131 |
+
triggers=[prompt.submit, run_button.click],
|
132 |
+
fn=run,
|
133 |
+
inputs=[
|
134 |
+
input_image,
|
135 |
+
prompt,
|
136 |
+
text_decoding_method,
|
137 |
+
num_beams,
|
138 |
+
max_length,
|
139 |
+
min_length,
|
140 |
+
top_p,
|
141 |
+
repetition_penalty,
|
142 |
+
length_penalty,
|
143 |
+
temperature,
|
144 |
+
],
|
145 |
+
outputs=output,
|
146 |
+
api_name="run",
|
147 |
+
)
|
148 |
|
149 |
if __name__ == "__main__":
|
150 |
+
demo.queue(max_size=20).launch()
|
requirements.txt
CHANGED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==0.23.0
|
2 |
+
gradio==3.50.2
|
3 |
+
Pillow==10.1.0
|
4 |
+
spaces==0.16.3
|
5 |
+
torch==2.0.0
|
6 |
+
torchvision==0.15.1
|
7 |
+
transformers==4.34.1
|