DETA / app.py
hysts's picture
hysts HF staff
Update
e0af351
#!/usr/bin/env python
import pathlib
import gradio as gr
import numpy as np
import PIL.Image
import spaces
import torch
from sahi.prediction import ObjectPrediction
from sahi.utils.cv import visualize_object_predictions
from transformers import AutoImageProcessor, DetaForObjectDetection
DESCRIPTION = "# DETA (Detection Transformers with Assignment)"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
MODEL_ID = "jozhang97/deta-swin-large"
image_processor = AutoImageProcessor.from_pretrained(MODEL_ID)
model = DetaForObjectDetection.from_pretrained(MODEL_ID)
model.to(device)
@spaces.GPU
@torch.inference_mode()
def run(image_path: str, threshold: float) -> np.ndarray:
image = PIL.Image.open(image_path)
inputs = image_processor(images=image, return_tensors="pt").to(device)
outputs = model(**inputs)
target_sizes = torch.tensor([image.size[::-1]])
results = image_processor.post_process_object_detection(outputs, threshold=threshold, target_sizes=target_sizes)[0]
boxes = results["boxes"].cpu().numpy()
scores = results["scores"].cpu().numpy()
cat_ids = results["labels"].cpu().numpy().tolist()
preds = []
for box, score, cat_id in zip(boxes, scores, cat_ids):
box = np.round(box).astype(int)
cat_label = model.config.id2label[cat_id]
pred = ObjectPrediction(bbox=box, category_id=cat_id, category_name=cat_label, score=score)
preds.append(pred)
res = visualize_object_predictions(np.asarray(image), preds)["image"]
return res
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
image = gr.Image(label="Input image", type="filepath")
threshold = gr.Slider(label="Score threshold", minimum=0, maximum=1, step=0.01, value=0.1)
run_button = gr.Button()
result = gr.Image(label="Result")
gr.Examples(
examples=[[path, 0.1] for path in sorted(pathlib.Path("images").glob("*.jpg"))],
inputs=[image, threshold],
outputs=result,
fn=run,
)
run_button.click(
fn=run,
inputs=[image, threshold],
outputs=result,
api_name="predict",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()