Spaces:
Runtime error
Runtime error
Update to the original Space
Browse files- README.md +1 -1
- app.py +83 -58
- gradio_canny2image.py β app_canny.py +50 -33
- gradio_depth2image.py β app_depth.py +40 -22
- gradio_fake_scribble2image.py β app_fake_scribble.py +37 -22
- gradio_hed2image.py β app_hed.py +37 -22
- gradio_hough2image.py β app_hough.py +41 -25
- gradio_normal2image.py β app_normal.py +41 -23
- gradio_pose2image.py β app_pose.py +43 -22
- gradio_scribble2image.py β app_scribble.py +36 -22
- gradio_scribble2image_interactive.py β app_scribble_interactive.py +36 -22
- gradio_seg2image.py β app_seg.py +40 -22
- model.py +564 -698
- requirements.txt +3 -2
README.md
CHANGED
|
@@ -4,7 +4,7 @@ emoji: π»
|
|
| 4 |
colorFrom: pink
|
| 5 |
colorTo: blue
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 3.
|
| 8 |
python_version: 3.10.9
|
| 9 |
app_file: app.py
|
| 10 |
pinned: false
|
|
|
|
| 4 |
colorFrom: pink
|
| 5 |
colorTo: blue
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.20.0
|
| 8 |
python_version: 3.10.9
|
| 9 |
app_file: app.py
|
| 10 |
pinned: false
|
app.py
CHANGED
|
@@ -30,92 +30,117 @@ for name in names:
|
|
| 30 |
continue
|
| 31 |
subprocess.run(shlex.split(command), cwd='ControlNet/annotator/ckpts/')
|
| 32 |
|
| 33 |
-
from
|
| 34 |
-
from
|
| 35 |
-
from
|
| 36 |
-
from
|
| 37 |
-
from
|
| 38 |
-
from
|
| 39 |
-
from
|
| 40 |
-
from
|
| 41 |
-
from
|
| 42 |
create_demo as create_demo_scribble_interactive
|
| 43 |
-
from
|
| 44 |
-
from model import
|
| 45 |
-
DEFAULT_BASE_MODEL_URL, Model)
|
| 46 |
|
| 47 |
-
|
| 48 |
-
DESCRIPTION = '''# [ControlNet](https://github.com/lllyasviel/ControlNet)
|
| 49 |
-
|
| 50 |
-
This Space is a modified version of [this Space](https://huggingface.co/spaces/hysts/ControlNet).
|
| 51 |
-
The original Space uses [Stable Diffusion v1.5](https://huggingface.co/runwayml/stable-diffusion-v1-5) as the base model, but [Anything v4.0](https://huggingface.co/andite/anything-v4.0) is used in this Space.
|
| 52 |
-
'''
|
| 53 |
|
| 54 |
SPACE_ID = os.getenv('SPACE_ID')
|
| 55 |
-
ALLOW_CHANGING_BASE_MODEL = SPACE_ID != 'hysts/ControlNet
|
| 56 |
-
|
| 57 |
-
if not ALLOW_CHANGING_BASE_MODEL:
|
| 58 |
-
DESCRIPTION += 'In this Space, the base model is not allowed to be changed so as not to slow down the demo, but it can be changed if you duplicate the Space.'
|
| 59 |
|
| 60 |
if SPACE_ID is not None:
|
| 61 |
-
DESCRIPTION += f'''<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings
|
| 62 |
-
<a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true">
|
| 63 |
-
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
|
| 64 |
-
<p/>
|
| 65 |
'''
|
| 66 |
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
with gr.Blocks(css='style.css') as demo:
|
| 70 |
gr.Markdown(DESCRIPTION)
|
| 71 |
-
|
| 72 |
with gr.Tabs():
|
| 73 |
with gr.TabItem('Canny'):
|
| 74 |
-
create_demo_canny(model.process_canny,
|
|
|
|
|
|
|
| 75 |
with gr.TabItem('Hough'):
|
| 76 |
-
create_demo_hough(model.process_hough,
|
|
|
|
|
|
|
| 77 |
with gr.TabItem('HED'):
|
| 78 |
-
create_demo_hed(model.process_hed,
|
|
|
|
|
|
|
| 79 |
with gr.TabItem('Scribble'):
|
| 80 |
-
create_demo_scribble(model.process_scribble,
|
|
|
|
|
|
|
| 81 |
with gr.TabItem('Scribble Interactive'):
|
| 82 |
create_demo_scribble_interactive(
|
| 83 |
-
model.process_scribble_interactive,
|
|
|
|
|
|
|
| 84 |
with gr.TabItem('Fake Scribble'):
|
| 85 |
create_demo_fake_scribble(model.process_fake_scribble,
|
| 86 |
-
max_images=MAX_IMAGES
|
|
|
|
| 87 |
with gr.TabItem('Pose'):
|
| 88 |
-
create_demo_pose(model.process_pose,
|
|
|
|
|
|
|
| 89 |
with gr.TabItem('Segmentation'):
|
| 90 |
-
create_demo_seg(model.process_seg,
|
|
|
|
|
|
|
| 91 |
with gr.TabItem('Depth'):
|
| 92 |
-
create_demo_depth(model.process_depth,
|
|
|
|
|
|
|
| 93 |
with gr.TabItem('Normal map'):
|
| 94 |
-
create_demo_normal(model.process_normal,
|
|
|
|
|
|
|
| 95 |
|
| 96 |
with gr.Accordion(label='Base model', open=False):
|
| 97 |
-
current_base_model = gr.Text(label='Current base model',
|
| 98 |
-
value=DEFAULT_BASE_MODEL_URL)
|
| 99 |
with gr.Row():
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
change_base_model_button.click(fn=model.set_base_model,
|
| 115 |
-
inputs=
|
| 116 |
-
base_model_repo,
|
| 117 |
-
base_model_filename,
|
| 118 |
-
],
|
| 119 |
outputs=current_base_model)
|
| 120 |
|
| 121 |
demo.queue(api_open=False).launch()
|
|
|
|
| 30 |
continue
|
| 31 |
subprocess.run(shlex.split(command), cwd='ControlNet/annotator/ckpts/')
|
| 32 |
|
| 33 |
+
from app_canny import create_demo as create_demo_canny
|
| 34 |
+
from app_depth import create_demo as create_demo_depth
|
| 35 |
+
from app_fake_scribble import create_demo as create_demo_fake_scribble
|
| 36 |
+
from app_hed import create_demo as create_demo_hed
|
| 37 |
+
from app_hough import create_demo as create_demo_hough
|
| 38 |
+
from app_normal import create_demo as create_demo_normal
|
| 39 |
+
from app_pose import create_demo as create_demo_pose
|
| 40 |
+
from app_scribble import create_demo as create_demo_scribble
|
| 41 |
+
from app_scribble_interactive import \
|
| 42 |
create_demo as create_demo_scribble_interactive
|
| 43 |
+
from app_seg import create_demo as create_demo_seg
|
| 44 |
+
from model import Model, download_all_controlnet_weights
|
|
|
|
| 45 |
|
| 46 |
+
DESCRIPTION = '# [ControlNet](https://github.com/lllyasviel/ControlNet)'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
SPACE_ID = os.getenv('SPACE_ID')
|
| 49 |
+
ALLOW_CHANGING_BASE_MODEL = SPACE_ID != 'hysts/ControlNet'
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
if SPACE_ID is not None:
|
| 52 |
+
DESCRIPTION += f'''<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>
|
|
|
|
|
|
|
|
|
|
| 53 |
'''
|
| 54 |
|
| 55 |
+
MAX_IMAGES = int(os.getenv('MAX_IMAGES', '3'))
|
| 56 |
+
DEFAULT_NUM_IMAGES = min(MAX_IMAGES, int(os.getenv('DEFAULT_NUM_IMAGES', '1')))
|
| 57 |
+
|
| 58 |
+
if os.getenv('SYSTEM') == 'spaces':
|
| 59 |
+
download_all_controlnet_weights()
|
| 60 |
+
|
| 61 |
+
DEFAULT_MODEL_ID = os.getenv('DEFAULT_MODEL_ID',
|
| 62 |
+
'runwayml/stable-diffusion-v1-5')
|
| 63 |
+
model = Model(base_model_id=DEFAULT_MODEL_ID, task_name='canny')
|
| 64 |
|
| 65 |
with gr.Blocks(css='style.css') as demo:
|
| 66 |
gr.Markdown(DESCRIPTION)
|
|
|
|
| 67 |
with gr.Tabs():
|
| 68 |
with gr.TabItem('Canny'):
|
| 69 |
+
create_demo_canny(model.process_canny,
|
| 70 |
+
max_images=MAX_IMAGES,
|
| 71 |
+
default_num_images=DEFAULT_NUM_IMAGES)
|
| 72 |
with gr.TabItem('Hough'):
|
| 73 |
+
create_demo_hough(model.process_hough,
|
| 74 |
+
max_images=MAX_IMAGES,
|
| 75 |
+
default_num_images=DEFAULT_NUM_IMAGES)
|
| 76 |
with gr.TabItem('HED'):
|
| 77 |
+
create_demo_hed(model.process_hed,
|
| 78 |
+
max_images=MAX_IMAGES,
|
| 79 |
+
default_num_images=DEFAULT_NUM_IMAGES)
|
| 80 |
with gr.TabItem('Scribble'):
|
| 81 |
+
create_demo_scribble(model.process_scribble,
|
| 82 |
+
max_images=MAX_IMAGES,
|
| 83 |
+
default_num_images=DEFAULT_NUM_IMAGES)
|
| 84 |
with gr.TabItem('Scribble Interactive'):
|
| 85 |
create_demo_scribble_interactive(
|
| 86 |
+
model.process_scribble_interactive,
|
| 87 |
+
max_images=MAX_IMAGES,
|
| 88 |
+
default_num_images=DEFAULT_NUM_IMAGES)
|
| 89 |
with gr.TabItem('Fake Scribble'):
|
| 90 |
create_demo_fake_scribble(model.process_fake_scribble,
|
| 91 |
+
max_images=MAX_IMAGES,
|
| 92 |
+
default_num_images=DEFAULT_NUM_IMAGES)
|
| 93 |
with gr.TabItem('Pose'):
|
| 94 |
+
create_demo_pose(model.process_pose,
|
| 95 |
+
max_images=MAX_IMAGES,
|
| 96 |
+
default_num_images=DEFAULT_NUM_IMAGES)
|
| 97 |
with gr.TabItem('Segmentation'):
|
| 98 |
+
create_demo_seg(model.process_seg,
|
| 99 |
+
max_images=MAX_IMAGES,
|
| 100 |
+
default_num_images=DEFAULT_NUM_IMAGES)
|
| 101 |
with gr.TabItem('Depth'):
|
| 102 |
+
create_demo_depth(model.process_depth,
|
| 103 |
+
max_images=MAX_IMAGES,
|
| 104 |
+
default_num_images=DEFAULT_NUM_IMAGES)
|
| 105 |
with gr.TabItem('Normal map'):
|
| 106 |
+
create_demo_normal(model.process_normal,
|
| 107 |
+
max_images=MAX_IMAGES,
|
| 108 |
+
default_num_images=DEFAULT_NUM_IMAGES)
|
| 109 |
|
| 110 |
with gr.Accordion(label='Base model', open=False):
|
|
|
|
|
|
|
| 111 |
with gr.Row():
|
| 112 |
+
with gr.Column():
|
| 113 |
+
current_base_model = gr.Text(label='Current base model')
|
| 114 |
+
with gr.Column(scale=0.3):
|
| 115 |
+
check_base_model_button = gr.Button('Check current base model')
|
| 116 |
+
with gr.Row():
|
| 117 |
+
with gr.Column():
|
| 118 |
+
new_base_model_id = gr.Text(
|
| 119 |
+
label='New base model',
|
| 120 |
+
max_lines=1,
|
| 121 |
+
placeholder='runwayml/stable-diffusion-v1-5',
|
| 122 |
+
info=
|
| 123 |
+
'The base model must be compatible with Stable Diffusion v1.5.',
|
| 124 |
+
interactive=ALLOW_CHANGING_BASE_MODEL)
|
| 125 |
+
with gr.Column(scale=0.3):
|
| 126 |
+
change_base_model_button = gr.Button('Change base model')
|
| 127 |
+
if not ALLOW_CHANGING_BASE_MODEL:
|
| 128 |
+
gr.Markdown(
|
| 129 |
+
'''The base model is not allowed to be changed in this Space so as not to slow down the demo, but it can be changed if you duplicate the Space. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a>'''
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
gr.Markdown(
|
| 133 |
+
'[Space using Anything-v4.0 as base model](https://huggingface.co/spaces/hysts/ControlNet-with-other-models)'
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
check_base_model_button.click(fn=lambda: model.base_model_id,
|
| 137 |
+
outputs=current_base_model,
|
| 138 |
+
queue=False)
|
| 139 |
+
new_base_model_id.submit(fn=model.set_base_model,
|
| 140 |
+
inputs=new_base_model_id,
|
| 141 |
+
outputs=current_base_model)
|
| 142 |
change_base_model_button.click(fn=model.set_base_model,
|
| 143 |
+
inputs=new_base_model_id,
|
|
|
|
|
|
|
|
|
|
| 144 |
outputs=current_base_model)
|
| 145 |
|
| 146 |
demo.queue(api_open=False).launch()
|
gradio_canny2image.py β app_canny.py
RENAMED
|
@@ -3,7 +3,7 @@
|
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
|
| 6 |
-
def create_demo(process, max_images=12):
|
| 7 |
with gr.Blocks() as demo:
|
| 8 |
with gr.Row():
|
| 9 |
gr.Markdown('## Control Stable Diffusion with Canny Edge Maps')
|
|
@@ -16,39 +16,40 @@ def create_demo(process, max_images=12):
|
|
| 16 |
num_samples = gr.Slider(label='Images',
|
| 17 |
minimum=1,
|
| 18 |
maximum=max_images,
|
| 19 |
-
value=
|
| 20 |
step=1)
|
| 21 |
image_resolution = gr.Slider(label='Image Resolution',
|
| 22 |
minimum=256,
|
| 23 |
maximum=768,
|
| 24 |
value=512,
|
| 25 |
step=256)
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
| 46 |
seed = gr.Slider(label='Seed',
|
| 47 |
minimum=-1,
|
| 48 |
maximum=2147483647,
|
| 49 |
step=1,
|
| 50 |
randomize=True)
|
| 51 |
-
eta = gr.Number(label='eta (DDIM)', value=0.0)
|
| 52 |
a_prompt = gr.Textbox(
|
| 53 |
label='Added Prompt',
|
| 54 |
value='best quality, extremely detailed')
|
|
@@ -58,17 +59,33 @@ def create_demo(process, max_images=12):
|
|
| 58 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 59 |
)
|
| 60 |
with gr.Column():
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
input_image,
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
]
|
|
|
|
| 70 |
run_button.click(fn=process,
|
| 71 |
-
inputs=
|
| 72 |
-
outputs=
|
| 73 |
api_name='canny')
|
| 74 |
return demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
|
| 6 |
+
def create_demo(process, max_images=12, default_num_images=3):
|
| 7 |
with gr.Blocks() as demo:
|
| 8 |
with gr.Row():
|
| 9 |
gr.Markdown('## Control Stable Diffusion with Canny Edge Maps')
|
|
|
|
| 16 |
num_samples = gr.Slider(label='Images',
|
| 17 |
minimum=1,
|
| 18 |
maximum=max_images,
|
| 19 |
+
value=default_num_images,
|
| 20 |
step=1)
|
| 21 |
image_resolution = gr.Slider(label='Image Resolution',
|
| 22 |
minimum=256,
|
| 23 |
maximum=768,
|
| 24 |
value=512,
|
| 25 |
step=256)
|
| 26 |
+
canny_low_threshold = gr.Slider(
|
| 27 |
+
label='Canny low threshold',
|
| 28 |
+
minimum=1,
|
| 29 |
+
maximum=255,
|
| 30 |
+
value=100,
|
| 31 |
+
step=1)
|
| 32 |
+
canny_high_threshold = gr.Slider(
|
| 33 |
+
label='Canny high threshold',
|
| 34 |
+
minimum=1,
|
| 35 |
+
maximum=255,
|
| 36 |
+
value=200,
|
| 37 |
+
step=1)
|
| 38 |
+
num_steps = gr.Slider(label='Steps',
|
| 39 |
+
minimum=1,
|
| 40 |
+
maximum=100,
|
| 41 |
+
value=20,
|
| 42 |
+
step=1)
|
| 43 |
+
guidance_scale = gr.Slider(label='Guidance Scale',
|
| 44 |
+
minimum=0.1,
|
| 45 |
+
maximum=30.0,
|
| 46 |
+
value=9.0,
|
| 47 |
+
step=0.1)
|
| 48 |
seed = gr.Slider(label='Seed',
|
| 49 |
minimum=-1,
|
| 50 |
maximum=2147483647,
|
| 51 |
step=1,
|
| 52 |
randomize=True)
|
|
|
|
| 53 |
a_prompt = gr.Textbox(
|
| 54 |
label='Added Prompt',
|
| 55 |
value='best quality, extremely detailed')
|
|
|
|
| 59 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 60 |
)
|
| 61 |
with gr.Column():
|
| 62 |
+
result = gr.Gallery(label='Output',
|
| 63 |
+
show_label=False,
|
| 64 |
+
elem_id='gallery').style(grid=2,
|
| 65 |
+
height='auto')
|
| 66 |
+
inputs = [
|
| 67 |
+
input_image,
|
| 68 |
+
prompt,
|
| 69 |
+
a_prompt,
|
| 70 |
+
n_prompt,
|
| 71 |
+
num_samples,
|
| 72 |
+
image_resolution,
|
| 73 |
+
num_steps,
|
| 74 |
+
guidance_scale,
|
| 75 |
+
seed,
|
| 76 |
+
canny_low_threshold,
|
| 77 |
+
canny_high_threshold,
|
| 78 |
]
|
| 79 |
+
prompt.submit(fn=process, inputs=inputs, outputs=result)
|
| 80 |
run_button.click(fn=process,
|
| 81 |
+
inputs=inputs,
|
| 82 |
+
outputs=result,
|
| 83 |
api_name='canny')
|
| 84 |
return demo
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
if __name__ == '__main__':
|
| 88 |
+
from model import Model
|
| 89 |
+
model = Model()
|
| 90 |
+
demo = create_demo(model.process_canny)
|
| 91 |
+
demo.queue().launch()
|
gradio_depth2image.py β app_depth.py
RENAMED
|
@@ -3,7 +3,7 @@
|
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
|
| 6 |
-
def create_demo(process, max_images=12):
|
| 7 |
with gr.Blocks() as demo:
|
| 8 |
with gr.Row():
|
| 9 |
gr.Markdown('## Control Stable Diffusion with Depth Maps')
|
|
@@ -13,10 +13,12 @@ def create_demo(process, max_images=12):
|
|
| 13 |
prompt = gr.Textbox(label='Prompt')
|
| 14 |
run_button = gr.Button(label='Run')
|
| 15 |
with gr.Accordion('Advanced options', open=False):
|
|
|
|
|
|
|
| 16 |
num_samples = gr.Slider(label='Images',
|
| 17 |
minimum=1,
|
| 18 |
maximum=max_images,
|
| 19 |
-
value=
|
| 20 |
step=1)
|
| 21 |
image_resolution = gr.Slider(label='Image Resolution',
|
| 22 |
minimum=256,
|
|
@@ -28,22 +30,21 @@ def create_demo(process, max_images=12):
|
|
| 28 |
maximum=1024,
|
| 29 |
value=384,
|
| 30 |
step=1)
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
seed = gr.Slider(label='Seed',
|
| 42 |
minimum=-1,
|
| 43 |
maximum=2147483647,
|
| 44 |
step=1,
|
| 45 |
randomize=True)
|
| 46 |
-
eta = gr.Number(label='eta (DDIM)', value=0.0)
|
| 47 |
a_prompt = gr.Textbox(
|
| 48 |
label='Added Prompt',
|
| 49 |
value='best quality, extremely detailed')
|
|
@@ -53,16 +54,33 @@ def create_demo(process, max_images=12):
|
|
| 53 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 54 |
)
|
| 55 |
with gr.Column():
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
input_image,
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
]
|
|
|
|
| 64 |
run_button.click(fn=process,
|
| 65 |
-
inputs=
|
| 66 |
-
outputs=
|
| 67 |
api_name='depth')
|
| 68 |
return demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
|
| 6 |
+
def create_demo(process, max_images=12, default_num_images=3):
|
| 7 |
with gr.Blocks() as demo:
|
| 8 |
with gr.Row():
|
| 9 |
gr.Markdown('## Control Stable Diffusion with Depth Maps')
|
|
|
|
| 13 |
prompt = gr.Textbox(label='Prompt')
|
| 14 |
run_button = gr.Button(label='Run')
|
| 15 |
with gr.Accordion('Advanced options', open=False):
|
| 16 |
+
is_depth_image = gr.Checkbox(label='Is depth image',
|
| 17 |
+
value=False)
|
| 18 |
num_samples = gr.Slider(label='Images',
|
| 19 |
minimum=1,
|
| 20 |
maximum=max_images,
|
| 21 |
+
value=default_num_images,
|
| 22 |
step=1)
|
| 23 |
image_resolution = gr.Slider(label='Image Resolution',
|
| 24 |
minimum=256,
|
|
|
|
| 30 |
maximum=1024,
|
| 31 |
value=384,
|
| 32 |
step=1)
|
| 33 |
+
num_steps = gr.Slider(label='Steps',
|
| 34 |
+
minimum=1,
|
| 35 |
+
maximum=100,
|
| 36 |
+
value=20,
|
| 37 |
+
step=1)
|
| 38 |
+
guidance_scale = gr.Slider(label='Guidance Scale',
|
| 39 |
+
minimum=0.1,
|
| 40 |
+
maximum=30.0,
|
| 41 |
+
value=9.0,
|
| 42 |
+
step=0.1)
|
| 43 |
seed = gr.Slider(label='Seed',
|
| 44 |
minimum=-1,
|
| 45 |
maximum=2147483647,
|
| 46 |
step=1,
|
| 47 |
randomize=True)
|
|
|
|
| 48 |
a_prompt = gr.Textbox(
|
| 49 |
label='Added Prompt',
|
| 50 |
value='best quality, extremely detailed')
|
|
|
|
| 54 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 55 |
)
|
| 56 |
with gr.Column():
|
| 57 |
+
result = gr.Gallery(label='Output',
|
| 58 |
+
show_label=False,
|
| 59 |
+
elem_id='gallery').style(grid=2,
|
| 60 |
+
height='auto')
|
| 61 |
+
inputs = [
|
| 62 |
+
input_image,
|
| 63 |
+
prompt,
|
| 64 |
+
a_prompt,
|
| 65 |
+
n_prompt,
|
| 66 |
+
num_samples,
|
| 67 |
+
image_resolution,
|
| 68 |
+
detect_resolution,
|
| 69 |
+
num_steps,
|
| 70 |
+
guidance_scale,
|
| 71 |
+
seed,
|
| 72 |
+
is_depth_image,
|
| 73 |
]
|
| 74 |
+
prompt.submit(fn=process, inputs=inputs, outputs=result)
|
| 75 |
run_button.click(fn=process,
|
| 76 |
+
inputs=inputs,
|
| 77 |
+
outputs=result,
|
| 78 |
api_name='depth')
|
| 79 |
return demo
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
if __name__ == '__main__':
|
| 83 |
+
from model import Model
|
| 84 |
+
model = Model()
|
| 85 |
+
demo = create_demo(model.process_depth)
|
| 86 |
+
demo.queue().launch()
|
gradio_fake_scribble2image.py β app_fake_scribble.py
RENAMED
|
@@ -3,7 +3,7 @@
|
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
|
| 6 |
-
def create_demo(process, max_images=12):
|
| 7 |
with gr.Blocks() as demo:
|
| 8 |
with gr.Row():
|
| 9 |
gr.Markdown('## Control Stable Diffusion with Fake Scribble Maps')
|
|
@@ -16,7 +16,7 @@ def create_demo(process, max_images=12):
|
|
| 16 |
num_samples = gr.Slider(label='Images',
|
| 17 |
minimum=1,
|
| 18 |
maximum=max_images,
|
| 19 |
-
value=
|
| 20 |
step=1)
|
| 21 |
image_resolution = gr.Slider(label='Image Resolution',
|
| 22 |
minimum=256,
|
|
@@ -28,22 +28,21 @@ def create_demo(process, max_images=12):
|
|
| 28 |
maximum=1024,
|
| 29 |
value=512,
|
| 30 |
step=1)
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
seed = gr.Slider(label='Seed',
|
| 42 |
minimum=-1,
|
| 43 |
maximum=2147483647,
|
| 44 |
step=1,
|
| 45 |
randomize=True)
|
| 46 |
-
eta = gr.Number(label='eta (DDIM)', value=0.0)
|
| 47 |
a_prompt = gr.Textbox(
|
| 48 |
label='Added Prompt',
|
| 49 |
value='best quality, extremely detailed')
|
|
@@ -53,16 +52,32 @@ def create_demo(process, max_images=12):
|
|
| 53 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 54 |
)
|
| 55 |
with gr.Column():
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
input_image,
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
]
|
|
|
|
| 64 |
run_button.click(fn=process,
|
| 65 |
-
inputs=
|
| 66 |
-
outputs=
|
| 67 |
api_name='fake_scribble')
|
| 68 |
return demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
|
| 6 |
+
def create_demo(process, max_images=12, default_num_images=3):
|
| 7 |
with gr.Blocks() as demo:
|
| 8 |
with gr.Row():
|
| 9 |
gr.Markdown('## Control Stable Diffusion with Fake Scribble Maps')
|
|
|
|
| 16 |
num_samples = gr.Slider(label='Images',
|
| 17 |
minimum=1,
|
| 18 |
maximum=max_images,
|
| 19 |
+
value=default_num_images,
|
| 20 |
step=1)
|
| 21 |
image_resolution = gr.Slider(label='Image Resolution',
|
| 22 |
minimum=256,
|
|
|
|
| 28 |
maximum=1024,
|
| 29 |
value=512,
|
| 30 |
step=1)
|
| 31 |
+
num_steps = gr.Slider(label='Steps',
|
| 32 |
+
minimum=1,
|
| 33 |
+
maximum=100,
|
| 34 |
+
value=20,
|
| 35 |
+
step=1)
|
| 36 |
+
guidance_scale = gr.Slider(label='Guidance Scale',
|
| 37 |
+
minimum=0.1,
|
| 38 |
+
maximum=30.0,
|
| 39 |
+
value=9.0,
|
| 40 |
+
step=0.1)
|
| 41 |
seed = gr.Slider(label='Seed',
|
| 42 |
minimum=-1,
|
| 43 |
maximum=2147483647,
|
| 44 |
step=1,
|
| 45 |
randomize=True)
|
|
|
|
| 46 |
a_prompt = gr.Textbox(
|
| 47 |
label='Added Prompt',
|
| 48 |
value='best quality, extremely detailed')
|
|
|
|
| 52 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 53 |
)
|
| 54 |
with gr.Column():
|
| 55 |
+
result = gr.Gallery(label='Output',
|
| 56 |
+
show_label=False,
|
| 57 |
+
elem_id='gallery').style(grid=2,
|
| 58 |
+
height='auto')
|
| 59 |
+
inputs = [
|
| 60 |
+
input_image,
|
| 61 |
+
prompt,
|
| 62 |
+
a_prompt,
|
| 63 |
+
n_prompt,
|
| 64 |
+
num_samples,
|
| 65 |
+
image_resolution,
|
| 66 |
+
detect_resolution,
|
| 67 |
+
num_steps,
|
| 68 |
+
guidance_scale,
|
| 69 |
+
seed,
|
| 70 |
]
|
| 71 |
+
prompt.submit(fn=process, inputs=inputs, outputs=result)
|
| 72 |
run_button.click(fn=process,
|
| 73 |
+
inputs=inputs,
|
| 74 |
+
outputs=result,
|
| 75 |
api_name='fake_scribble')
|
| 76 |
return demo
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
if __name__ == '__main__':
|
| 80 |
+
from model import Model
|
| 81 |
+
model = Model()
|
| 82 |
+
demo = create_demo(model.process_fake_scribble)
|
| 83 |
+
demo.queue().launch()
|
gradio_hed2image.py β app_hed.py
RENAMED
|
@@ -3,7 +3,7 @@
|
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
|
| 6 |
-
def create_demo(process, max_images=12):
|
| 7 |
with gr.Blocks() as demo:
|
| 8 |
with gr.Row():
|
| 9 |
gr.Markdown('## Control Stable Diffusion with HED Maps')
|
|
@@ -16,7 +16,7 @@ def create_demo(process, max_images=12):
|
|
| 16 |
num_samples = gr.Slider(label='Images',
|
| 17 |
minimum=1,
|
| 18 |
maximum=max_images,
|
| 19 |
-
value=
|
| 20 |
step=1)
|
| 21 |
image_resolution = gr.Slider(label='Image Resolution',
|
| 22 |
minimum=256,
|
|
@@ -28,22 +28,21 @@ def create_demo(process, max_images=12):
|
|
| 28 |
maximum=1024,
|
| 29 |
value=512,
|
| 30 |
step=1)
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
seed = gr.Slider(label='Seed',
|
| 42 |
minimum=-1,
|
| 43 |
maximum=2147483647,
|
| 44 |
step=1,
|
| 45 |
randomize=True)
|
| 46 |
-
eta = gr.Number(label='eta (DDIM)', value=0.0)
|
| 47 |
a_prompt = gr.Textbox(
|
| 48 |
label='Added Prompt',
|
| 49 |
value='best quality, extremely detailed')
|
|
@@ -53,16 +52,32 @@ def create_demo(process, max_images=12):
|
|
| 53 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 54 |
)
|
| 55 |
with gr.Column():
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
input_image,
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
]
|
|
|
|
| 64 |
run_button.click(fn=process,
|
| 65 |
-
inputs=
|
| 66 |
-
outputs=
|
| 67 |
api_name='hed')
|
| 68 |
return demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
|
| 6 |
+
def create_demo(process, max_images=12, default_num_images=3):
|
| 7 |
with gr.Blocks() as demo:
|
| 8 |
with gr.Row():
|
| 9 |
gr.Markdown('## Control Stable Diffusion with HED Maps')
|
|
|
|
| 16 |
num_samples = gr.Slider(label='Images',
|
| 17 |
minimum=1,
|
| 18 |
maximum=max_images,
|
| 19 |
+
value=default_num_images,
|
| 20 |
step=1)
|
| 21 |
image_resolution = gr.Slider(label='Image Resolution',
|
| 22 |
minimum=256,
|
|
|
|
| 28 |
maximum=1024,
|
| 29 |
value=512,
|
| 30 |
step=1)
|
| 31 |
+
num_steps = gr.Slider(label='Steps',
|
| 32 |
+
minimum=1,
|
| 33 |
+
maximum=100,
|
| 34 |
+
value=20,
|
| 35 |
+
step=1)
|
| 36 |
+
guidance_scale = gr.Slider(label='Guidance Scale',
|
| 37 |
+
minimum=0.1,
|
| 38 |
+
maximum=30.0,
|
| 39 |
+
value=9.0,
|
| 40 |
+
step=0.1)
|
| 41 |
seed = gr.Slider(label='Seed',
|
| 42 |
minimum=-1,
|
| 43 |
maximum=2147483647,
|
| 44 |
step=1,
|
| 45 |
randomize=True)
|
|
|
|
| 46 |
a_prompt = gr.Textbox(
|
| 47 |
label='Added Prompt',
|
| 48 |
value='best quality, extremely detailed')
|
|
|
|
| 52 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 53 |
)
|
| 54 |
with gr.Column():
|
| 55 |
+
result = gr.Gallery(label='Output',
|
| 56 |
+
show_label=False,
|
| 57 |
+
elem_id='gallery').style(grid=2,
|
| 58 |
+
height='auto')
|
| 59 |
+
inputs = [
|
| 60 |
+
input_image,
|
| 61 |
+
prompt,
|
| 62 |
+
a_prompt,
|
| 63 |
+
n_prompt,
|
| 64 |
+
num_samples,
|
| 65 |
+
image_resolution,
|
| 66 |
+
detect_resolution,
|
| 67 |
+
num_steps,
|
| 68 |
+
guidance_scale,
|
| 69 |
+
seed,
|
| 70 |
]
|
| 71 |
+
prompt.submit(fn=process, inputs=inputs, outputs=result)
|
| 72 |
run_button.click(fn=process,
|
| 73 |
+
inputs=inputs,
|
| 74 |
+
outputs=result,
|
| 75 |
api_name='hed')
|
| 76 |
return demo
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
if __name__ == '__main__':
|
| 80 |
+
from model import Model
|
| 81 |
+
model = Model()
|
| 82 |
+
demo = create_demo(model.process_hed)
|
| 83 |
+
demo.queue().launch()
|
gradio_hough2image.py β app_hough.py
RENAMED
|
@@ -3,7 +3,7 @@
|
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
|
| 6 |
-
def create_demo(process, max_images=12):
|
| 7 |
with gr.Blocks() as demo:
|
| 8 |
with gr.Row():
|
| 9 |
gr.Markdown('## Control Stable Diffusion with Hough Line Maps')
|
|
@@ -16,7 +16,7 @@ def create_demo(process, max_images=12):
|
|
| 16 |
num_samples = gr.Slider(label='Images',
|
| 17 |
minimum=1,
|
| 18 |
maximum=max_images,
|
| 19 |
-
value=
|
| 20 |
step=1)
|
| 21 |
image_resolution = gr.Slider(label='Image Resolution',
|
| 22 |
minimum=256,
|
|
@@ -28,34 +28,33 @@ def create_demo(process, max_images=12):
|
|
| 28 |
maximum=1024,
|
| 29 |
value=512,
|
| 30 |
step=1)
|
| 31 |
-
|
| 32 |
label='Hough value threshold (MLSD)',
|
| 33 |
minimum=0.01,
|
| 34 |
maximum=2.0,
|
| 35 |
value=0.1,
|
| 36 |
step=0.01)
|
| 37 |
-
|
| 38 |
label='Hough distance threshold (MLSD)',
|
| 39 |
minimum=0.01,
|
| 40 |
maximum=20.0,
|
| 41 |
value=0.1,
|
| 42 |
step=0.01)
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
seed = gr.Slider(label='Seed',
|
| 54 |
minimum=-1,
|
| 55 |
maximum=2147483647,
|
| 56 |
step=1,
|
| 57 |
randomize=True)
|
| 58 |
-
eta = gr.Number(label='eta (DDIM)', value=0.0)
|
| 59 |
a_prompt = gr.Textbox(
|
| 60 |
label='Added Prompt',
|
| 61 |
value='best quality, extremely detailed')
|
|
@@ -65,17 +64,34 @@ def create_demo(process, max_images=12):
|
|
| 65 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 66 |
)
|
| 67 |
with gr.Column():
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
input_image,
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
]
|
|
|
|
| 77 |
run_button.click(fn=process,
|
| 78 |
-
inputs=
|
| 79 |
-
outputs=
|
| 80 |
api_name='hough')
|
| 81 |
return demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
|
| 6 |
+
def create_demo(process, max_images=12, default_num_images=3):
|
| 7 |
with gr.Blocks() as demo:
|
| 8 |
with gr.Row():
|
| 9 |
gr.Markdown('## Control Stable Diffusion with Hough Line Maps')
|
|
|
|
| 16 |
num_samples = gr.Slider(label='Images',
|
| 17 |
minimum=1,
|
| 18 |
maximum=max_images,
|
| 19 |
+
value=default_num_images,
|
| 20 |
step=1)
|
| 21 |
image_resolution = gr.Slider(label='Image Resolution',
|
| 22 |
minimum=256,
|
|
|
|
| 28 |
maximum=1024,
|
| 29 |
value=512,
|
| 30 |
step=1)
|
| 31 |
+
mlsd_value_threshold = gr.Slider(
|
| 32 |
label='Hough value threshold (MLSD)',
|
| 33 |
minimum=0.01,
|
| 34 |
maximum=2.0,
|
| 35 |
value=0.1,
|
| 36 |
step=0.01)
|
| 37 |
+
mlsd_distance_threshold = gr.Slider(
|
| 38 |
label='Hough distance threshold (MLSD)',
|
| 39 |
minimum=0.01,
|
| 40 |
maximum=20.0,
|
| 41 |
value=0.1,
|
| 42 |
step=0.01)
|
| 43 |
+
num_steps = gr.Slider(label='Steps',
|
| 44 |
+
minimum=1,
|
| 45 |
+
maximum=100,
|
| 46 |
+
value=20,
|
| 47 |
+
step=1)
|
| 48 |
+
guidance_scale = gr.Slider(label='Guidance Scale',
|
| 49 |
+
minimum=0.1,
|
| 50 |
+
maximum=30.0,
|
| 51 |
+
value=9.0,
|
| 52 |
+
step=0.1)
|
| 53 |
seed = gr.Slider(label='Seed',
|
| 54 |
minimum=-1,
|
| 55 |
maximum=2147483647,
|
| 56 |
step=1,
|
| 57 |
randomize=True)
|
|
|
|
| 58 |
a_prompt = gr.Textbox(
|
| 59 |
label='Added Prompt',
|
| 60 |
value='best quality, extremely detailed')
|
|
|
|
| 64 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 65 |
)
|
| 66 |
with gr.Column():
|
| 67 |
+
result = gr.Gallery(label='Output',
|
| 68 |
+
show_label=False,
|
| 69 |
+
elem_id='gallery').style(grid=2,
|
| 70 |
+
height='auto')
|
| 71 |
+
inputs = [
|
| 72 |
+
input_image,
|
| 73 |
+
prompt,
|
| 74 |
+
a_prompt,
|
| 75 |
+
n_prompt,
|
| 76 |
+
num_samples,
|
| 77 |
+
image_resolution,
|
| 78 |
+
detect_resolution,
|
| 79 |
+
num_steps,
|
| 80 |
+
guidance_scale,
|
| 81 |
+
seed,
|
| 82 |
+
mlsd_value_threshold,
|
| 83 |
+
mlsd_distance_threshold,
|
| 84 |
]
|
| 85 |
+
prompt.submit(fn=process, inputs=inputs, outputs=result)
|
| 86 |
run_button.click(fn=process,
|
| 87 |
+
inputs=inputs,
|
| 88 |
+
outputs=result,
|
| 89 |
api_name='hough')
|
| 90 |
return demo
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
if __name__ == '__main__':
|
| 94 |
+
from model import Model
|
| 95 |
+
model = Model()
|
| 96 |
+
demo = create_demo(model.process_hough)
|
| 97 |
+
demo.queue().launch()
|
gradio_normal2image.py β app_normal.py
RENAMED
|
@@ -3,7 +3,7 @@
|
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
|
| 6 |
-
def create_demo(process, max_images=12):
|
| 7 |
with gr.Blocks() as demo:
|
| 8 |
with gr.Row():
|
| 9 |
gr.Markdown('## Control Stable Diffusion with Normal Maps')
|
|
@@ -13,10 +13,12 @@ def create_demo(process, max_images=12):
|
|
| 13 |
prompt = gr.Textbox(label='Prompt')
|
| 14 |
run_button = gr.Button(label='Run')
|
| 15 |
with gr.Accordion('Advanced options', open=False):
|
|
|
|
|
|
|
| 16 |
num_samples = gr.Slider(label='Images',
|
| 17 |
minimum=1,
|
| 18 |
maximum=max_images,
|
| 19 |
-
value=
|
| 20 |
step=1)
|
| 21 |
image_resolution = gr.Slider(label='Image Resolution',
|
| 22 |
minimum=256,
|
|
@@ -34,22 +36,21 @@ def create_demo(process, max_images=12):
|
|
| 34 |
maximum=1.0,
|
| 35 |
value=0.4,
|
| 36 |
step=0.01)
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
seed = gr.Slider(label='Seed',
|
| 48 |
minimum=-1,
|
| 49 |
maximum=2147483647,
|
| 50 |
step=1,
|
| 51 |
randomize=True)
|
| 52 |
-
eta = gr.Number(label='eta (DDIM)', value=0.0)
|
| 53 |
a_prompt = gr.Textbox(
|
| 54 |
label='Added Prompt',
|
| 55 |
value='best quality, extremely detailed')
|
|
@@ -59,17 +60,34 @@ def create_demo(process, max_images=12):
|
|
| 59 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 60 |
)
|
| 61 |
with gr.Column():
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
input_image,
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
]
|
|
|
|
| 71 |
run_button.click(fn=process,
|
| 72 |
-
inputs=
|
| 73 |
-
outputs=
|
| 74 |
api_name='normal')
|
| 75 |
return demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
|
| 6 |
+
def create_demo(process, max_images=12, default_num_images=3):
|
| 7 |
with gr.Blocks() as demo:
|
| 8 |
with gr.Row():
|
| 9 |
gr.Markdown('## Control Stable Diffusion with Normal Maps')
|
|
|
|
| 13 |
prompt = gr.Textbox(label='Prompt')
|
| 14 |
run_button = gr.Button(label='Run')
|
| 15 |
with gr.Accordion('Advanced options', open=False):
|
| 16 |
+
is_normal_image = gr.Checkbox(label='Is normal image',
|
| 17 |
+
value=False)
|
| 18 |
num_samples = gr.Slider(label='Images',
|
| 19 |
minimum=1,
|
| 20 |
maximum=max_images,
|
| 21 |
+
value=default_num_images,
|
| 22 |
step=1)
|
| 23 |
image_resolution = gr.Slider(label='Image Resolution',
|
| 24 |
minimum=256,
|
|
|
|
| 36 |
maximum=1.0,
|
| 37 |
value=0.4,
|
| 38 |
step=0.01)
|
| 39 |
+
num_steps = gr.Slider(label='Steps',
|
| 40 |
+
minimum=1,
|
| 41 |
+
maximum=100,
|
| 42 |
+
value=20,
|
| 43 |
+
step=1)
|
| 44 |
+
guidance_scale = gr.Slider(label='Guidance Scale',
|
| 45 |
+
minimum=0.1,
|
| 46 |
+
maximum=30.0,
|
| 47 |
+
value=9.0,
|
| 48 |
+
step=0.1)
|
| 49 |
seed = gr.Slider(label='Seed',
|
| 50 |
minimum=-1,
|
| 51 |
maximum=2147483647,
|
| 52 |
step=1,
|
| 53 |
randomize=True)
|
|
|
|
| 54 |
a_prompt = gr.Textbox(
|
| 55 |
label='Added Prompt',
|
| 56 |
value='best quality, extremely detailed')
|
|
|
|
| 60 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 61 |
)
|
| 62 |
with gr.Column():
|
| 63 |
+
result = gr.Gallery(label='Output',
|
| 64 |
+
show_label=False,
|
| 65 |
+
elem_id='gallery').style(grid=2,
|
| 66 |
+
height='auto')
|
| 67 |
+
inputs = [
|
| 68 |
+
input_image,
|
| 69 |
+
prompt,
|
| 70 |
+
a_prompt,
|
| 71 |
+
n_prompt,
|
| 72 |
+
num_samples,
|
| 73 |
+
image_resolution,
|
| 74 |
+
detect_resolution,
|
| 75 |
+
num_steps,
|
| 76 |
+
guidance_scale,
|
| 77 |
+
seed,
|
| 78 |
+
bg_threshold,
|
| 79 |
+
is_normal_image,
|
| 80 |
]
|
| 81 |
+
prompt.submit(fn=process, inputs=inputs, outputs=result)
|
| 82 |
run_button.click(fn=process,
|
| 83 |
+
inputs=inputs,
|
| 84 |
+
outputs=result,
|
| 85 |
api_name='normal')
|
| 86 |
return demo
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
if __name__ == '__main__':
|
| 90 |
+
from model import Model
|
| 91 |
+
model = Model()
|
| 92 |
+
demo = create_demo(model.process_normal)
|
| 93 |
+
demo.queue().launch()
|
gradio_pose2image.py β app_pose.py
RENAMED
|
@@ -3,7 +3,7 @@
|
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
|
| 6 |
-
def create_demo(process, max_images=12):
|
| 7 |
with gr.Blocks() as demo:
|
| 8 |
with gr.Row():
|
| 9 |
gr.Markdown('## Control Stable Diffusion with Human Pose')
|
|
@@ -13,10 +13,15 @@ def create_demo(process, max_images=12):
|
|
| 13 |
prompt = gr.Textbox(label='Prompt')
|
| 14 |
run_button = gr.Button(label='Run')
|
| 15 |
with gr.Accordion('Advanced options', open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
num_samples = gr.Slider(label='Images',
|
| 17 |
minimum=1,
|
| 18 |
maximum=max_images,
|
| 19 |
-
value=
|
| 20 |
step=1)
|
| 21 |
image_resolution = gr.Slider(label='Image Resolution',
|
| 22 |
minimum=256,
|
|
@@ -28,22 +33,21 @@ def create_demo(process, max_images=12):
|
|
| 28 |
maximum=1024,
|
| 29 |
value=512,
|
| 30 |
step=1)
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
seed = gr.Slider(label='Seed',
|
| 42 |
minimum=-1,
|
| 43 |
maximum=2147483647,
|
| 44 |
step=1,
|
| 45 |
randomize=True)
|
| 46 |
-
eta = gr.Number(label='eta (DDIM)', value=0.0)
|
| 47 |
a_prompt = gr.Textbox(
|
| 48 |
label='Added Prompt',
|
| 49 |
value='best quality, extremely detailed')
|
|
@@ -53,16 +57,33 @@ def create_demo(process, max_images=12):
|
|
| 53 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 54 |
)
|
| 55 |
with gr.Column():
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
input_image,
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
]
|
|
|
|
| 64 |
run_button.click(fn=process,
|
| 65 |
-
inputs=
|
| 66 |
-
outputs=
|
| 67 |
api_name='pose')
|
| 68 |
return demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
|
| 6 |
+
def create_demo(process, max_images=12, default_num_images=3):
|
| 7 |
with gr.Blocks() as demo:
|
| 8 |
with gr.Row():
|
| 9 |
gr.Markdown('## Control Stable Diffusion with Human Pose')
|
|
|
|
| 13 |
prompt = gr.Textbox(label='Prompt')
|
| 14 |
run_button = gr.Button(label='Run')
|
| 15 |
with gr.Accordion('Advanced options', open=False):
|
| 16 |
+
is_pose_image = gr.Checkbox(label='Is pose image',
|
| 17 |
+
value=False)
|
| 18 |
+
gr.Markdown(
|
| 19 |
+
'You can use [PoseMaker2](https://huggingface.co/spaces/jonigata/PoseMaker2) to create pose images.'
|
| 20 |
+
)
|
| 21 |
num_samples = gr.Slider(label='Images',
|
| 22 |
minimum=1,
|
| 23 |
maximum=max_images,
|
| 24 |
+
value=default_num_images,
|
| 25 |
step=1)
|
| 26 |
image_resolution = gr.Slider(label='Image Resolution',
|
| 27 |
minimum=256,
|
|
|
|
| 33 |
maximum=1024,
|
| 34 |
value=512,
|
| 35 |
step=1)
|
| 36 |
+
num_steps = gr.Slider(label='Steps',
|
| 37 |
+
minimum=1,
|
| 38 |
+
maximum=100,
|
| 39 |
+
value=20,
|
| 40 |
+
step=1)
|
| 41 |
+
guidance_scale = gr.Slider(label='Guidance Scale',
|
| 42 |
+
minimum=0.1,
|
| 43 |
+
maximum=30.0,
|
| 44 |
+
value=9.0,
|
| 45 |
+
step=0.1)
|
| 46 |
seed = gr.Slider(label='Seed',
|
| 47 |
minimum=-1,
|
| 48 |
maximum=2147483647,
|
| 49 |
step=1,
|
| 50 |
randomize=True)
|
|
|
|
| 51 |
a_prompt = gr.Textbox(
|
| 52 |
label='Added Prompt',
|
| 53 |
value='best quality, extremely detailed')
|
|
|
|
| 57 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 58 |
)
|
| 59 |
with gr.Column():
|
| 60 |
+
result = gr.Gallery(label='Output',
|
| 61 |
+
show_label=False,
|
| 62 |
+
elem_id='gallery').style(grid=2,
|
| 63 |
+
height='auto')
|
| 64 |
+
inputs = [
|
| 65 |
+
input_image,
|
| 66 |
+
prompt,
|
| 67 |
+
a_prompt,
|
| 68 |
+
n_prompt,
|
| 69 |
+
num_samples,
|
| 70 |
+
image_resolution,
|
| 71 |
+
detect_resolution,
|
| 72 |
+
num_steps,
|
| 73 |
+
guidance_scale,
|
| 74 |
+
seed,
|
| 75 |
+
is_pose_image,
|
| 76 |
]
|
| 77 |
+
prompt.submit(fn=process, inputs=inputs, outputs=result)
|
| 78 |
run_button.click(fn=process,
|
| 79 |
+
inputs=inputs,
|
| 80 |
+
outputs=result,
|
| 81 |
api_name='pose')
|
| 82 |
return demo
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
if __name__ == '__main__':
|
| 86 |
+
from model import Model
|
| 87 |
+
model = Model()
|
| 88 |
+
demo = create_demo(model.process_pose)
|
| 89 |
+
demo.queue().launch()
|
gradio_scribble2image.py β app_scribble.py
RENAMED
|
@@ -3,7 +3,7 @@
|
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
|
| 6 |
-
def create_demo(process, max_images=12):
|
| 7 |
with gr.Blocks() as demo:
|
| 8 |
with gr.Row():
|
| 9 |
gr.Markdown('## Control Stable Diffusion with Scribble Maps')
|
|
@@ -16,29 +16,28 @@ def create_demo(process, max_images=12):
|
|
| 16 |
num_samples = gr.Slider(label='Images',
|
| 17 |
minimum=1,
|
| 18 |
maximum=max_images,
|
| 19 |
-
value=
|
| 20 |
step=1)
|
| 21 |
image_resolution = gr.Slider(label='Image Resolution',
|
| 22 |
minimum=256,
|
| 23 |
maximum=768,
|
| 24 |
value=512,
|
| 25 |
step=256)
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
seed = gr.Slider(label='Seed',
|
| 37 |
minimum=-1,
|
| 38 |
maximum=2147483647,
|
| 39 |
step=1,
|
| 40 |
randomize=True)
|
| 41 |
-
eta = gr.Number(label='eta (DDIM)', value=0.0)
|
| 42 |
a_prompt = gr.Textbox(
|
| 43 |
label='Added Prompt',
|
| 44 |
value='best quality, extremely detailed')
|
|
@@ -48,16 +47,31 @@ def create_demo(process, max_images=12):
|
|
| 48 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 49 |
)
|
| 50 |
with gr.Column():
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
input_image,
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
]
|
|
|
|
| 59 |
run_button.click(fn=process,
|
| 60 |
-
inputs=
|
| 61 |
-
outputs=
|
| 62 |
api_name='scribble')
|
| 63 |
return demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
|
| 6 |
+
def create_demo(process, max_images=12, default_num_images=3):
|
| 7 |
with gr.Blocks() as demo:
|
| 8 |
with gr.Row():
|
| 9 |
gr.Markdown('## Control Stable Diffusion with Scribble Maps')
|
|
|
|
| 16 |
num_samples = gr.Slider(label='Images',
|
| 17 |
minimum=1,
|
| 18 |
maximum=max_images,
|
| 19 |
+
value=default_num_images,
|
| 20 |
step=1)
|
| 21 |
image_resolution = gr.Slider(label='Image Resolution',
|
| 22 |
minimum=256,
|
| 23 |
maximum=768,
|
| 24 |
value=512,
|
| 25 |
step=256)
|
| 26 |
+
num_steps = gr.Slider(label='Steps',
|
| 27 |
+
minimum=1,
|
| 28 |
+
maximum=100,
|
| 29 |
+
value=20,
|
| 30 |
+
step=1)
|
| 31 |
+
guidance_scale = gr.Slider(label='Guidance Scale',
|
| 32 |
+
minimum=0.1,
|
| 33 |
+
maximum=30.0,
|
| 34 |
+
value=9.0,
|
| 35 |
+
step=0.1)
|
| 36 |
seed = gr.Slider(label='Seed',
|
| 37 |
minimum=-1,
|
| 38 |
maximum=2147483647,
|
| 39 |
step=1,
|
| 40 |
randomize=True)
|
|
|
|
| 41 |
a_prompt = gr.Textbox(
|
| 42 |
label='Added Prompt',
|
| 43 |
value='best quality, extremely detailed')
|
|
|
|
| 47 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 48 |
)
|
| 49 |
with gr.Column():
|
| 50 |
+
result = gr.Gallery(label='Output',
|
| 51 |
+
show_label=False,
|
| 52 |
+
elem_id='gallery').style(grid=2,
|
| 53 |
+
height='auto')
|
| 54 |
+
inputs = [
|
| 55 |
+
input_image,
|
| 56 |
+
prompt,
|
| 57 |
+
a_prompt,
|
| 58 |
+
n_prompt,
|
| 59 |
+
num_samples,
|
| 60 |
+
image_resolution,
|
| 61 |
+
num_steps,
|
| 62 |
+
guidance_scale,
|
| 63 |
+
seed,
|
| 64 |
]
|
| 65 |
+
prompt.submit(fn=process, inputs=inputs, outputs=result)
|
| 66 |
run_button.click(fn=process,
|
| 67 |
+
inputs=inputs,
|
| 68 |
+
outputs=result,
|
| 69 |
api_name='scribble')
|
| 70 |
return demo
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
if __name__ == '__main__':
|
| 74 |
+
from model import Model
|
| 75 |
+
model = Model()
|
| 76 |
+
demo = create_demo(model.process_scribble)
|
| 77 |
+
demo.queue().launch()
|
gradio_scribble2image_interactive.py β app_scribble_interactive.py
RENAMED
|
@@ -8,7 +8,7 @@ def create_canvas(w, h):
|
|
| 8 |
return np.zeros(shape=(h, w, 3), dtype=np.uint8) + 255
|
| 9 |
|
| 10 |
|
| 11 |
-
def create_demo(process, max_images=12):
|
| 12 |
with gr.Blocks() as demo:
|
| 13 |
with gr.Row():
|
| 14 |
gr.Markdown(
|
|
@@ -37,7 +37,7 @@ def create_demo(process, max_images=12):
|
|
| 37 |
)
|
| 38 |
create_button.click(fn=create_canvas,
|
| 39 |
inputs=[canvas_width, canvas_height],
|
| 40 |
-
outputs=
|
| 41 |
queue=False)
|
| 42 |
prompt = gr.Textbox(label='Prompt')
|
| 43 |
run_button = gr.Button(label='Run')
|
|
@@ -45,29 +45,28 @@ def create_demo(process, max_images=12):
|
|
| 45 |
num_samples = gr.Slider(label='Images',
|
| 46 |
minimum=1,
|
| 47 |
maximum=max_images,
|
| 48 |
-
value=
|
| 49 |
step=1)
|
| 50 |
image_resolution = gr.Slider(label='Image Resolution',
|
| 51 |
minimum=256,
|
| 52 |
maximum=768,
|
| 53 |
value=512,
|
| 54 |
step=256)
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
seed = gr.Slider(label='Seed',
|
| 66 |
minimum=-1,
|
| 67 |
maximum=2147483647,
|
| 68 |
step=1,
|
| 69 |
randomize=True)
|
| 70 |
-
eta = gr.Number(label='eta (DDIM)', value=0.0)
|
| 71 |
a_prompt = gr.Textbox(
|
| 72 |
label='Added Prompt',
|
| 73 |
value='best quality, extremely detailed')
|
|
@@ -77,13 +76,28 @@ def create_demo(process, max_images=12):
|
|
| 77 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 78 |
)
|
| 79 |
with gr.Column():
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
input_image,
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
]
|
| 88 |
-
|
|
|
|
| 89 |
return demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
return np.zeros(shape=(h, w, 3), dtype=np.uint8) + 255
|
| 9 |
|
| 10 |
|
| 11 |
+
def create_demo(process, max_images=12, default_num_images=3):
|
| 12 |
with gr.Blocks() as demo:
|
| 13 |
with gr.Row():
|
| 14 |
gr.Markdown(
|
|
|
|
| 37 |
)
|
| 38 |
create_button.click(fn=create_canvas,
|
| 39 |
inputs=[canvas_width, canvas_height],
|
| 40 |
+
outputs=input_image,
|
| 41 |
queue=False)
|
| 42 |
prompt = gr.Textbox(label='Prompt')
|
| 43 |
run_button = gr.Button(label='Run')
|
|
|
|
| 45 |
num_samples = gr.Slider(label='Images',
|
| 46 |
minimum=1,
|
| 47 |
maximum=max_images,
|
| 48 |
+
value=default_num_images,
|
| 49 |
step=1)
|
| 50 |
image_resolution = gr.Slider(label='Image Resolution',
|
| 51 |
minimum=256,
|
| 52 |
maximum=768,
|
| 53 |
value=512,
|
| 54 |
step=256)
|
| 55 |
+
num_steps = gr.Slider(label='Steps',
|
| 56 |
+
minimum=1,
|
| 57 |
+
maximum=100,
|
| 58 |
+
value=20,
|
| 59 |
+
step=1)
|
| 60 |
+
guidance_scale = gr.Slider(label='Guidance Scale',
|
| 61 |
+
minimum=0.1,
|
| 62 |
+
maximum=30.0,
|
| 63 |
+
value=9.0,
|
| 64 |
+
step=0.1)
|
| 65 |
seed = gr.Slider(label='Seed',
|
| 66 |
minimum=-1,
|
| 67 |
maximum=2147483647,
|
| 68 |
step=1,
|
| 69 |
randomize=True)
|
|
|
|
| 70 |
a_prompt = gr.Textbox(
|
| 71 |
label='Added Prompt',
|
| 72 |
value='best quality, extremely detailed')
|
|
|
|
| 76 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 77 |
)
|
| 78 |
with gr.Column():
|
| 79 |
+
result = gr.Gallery(label='Output',
|
| 80 |
+
show_label=False,
|
| 81 |
+
elem_id='gallery').style(grid=2,
|
| 82 |
+
height='auto')
|
| 83 |
+
inputs = [
|
| 84 |
+
input_image,
|
| 85 |
+
prompt,
|
| 86 |
+
a_prompt,
|
| 87 |
+
n_prompt,
|
| 88 |
+
num_samples,
|
| 89 |
+
image_resolution,
|
| 90 |
+
num_steps,
|
| 91 |
+
guidance_scale,
|
| 92 |
+
seed,
|
| 93 |
]
|
| 94 |
+
prompt.submit(fn=process, inputs=inputs, outputs=result)
|
| 95 |
+
run_button.click(fn=process, inputs=inputs, outputs=result)
|
| 96 |
return demo
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
if __name__ == '__main__':
|
| 100 |
+
from model import Model
|
| 101 |
+
model = Model()
|
| 102 |
+
demo = create_demo(model.process_scribble_interactive)
|
| 103 |
+
demo.queue().launch()
|
gradio_seg2image.py β app_seg.py
RENAMED
|
@@ -3,7 +3,7 @@
|
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
|
| 6 |
-
def create_demo(process, max_images=12):
|
| 7 |
with gr.Blocks() as demo:
|
| 8 |
with gr.Row():
|
| 9 |
gr.Markdown('## Control Stable Diffusion with Segmentation Maps')
|
|
@@ -13,10 +13,12 @@ def create_demo(process, max_images=12):
|
|
| 13 |
prompt = gr.Textbox(label='Prompt')
|
| 14 |
run_button = gr.Button(label='Run')
|
| 15 |
with gr.Accordion('Advanced options', open=False):
|
|
|
|
|
|
|
| 16 |
num_samples = gr.Slider(label='Images',
|
| 17 |
minimum=1,
|
| 18 |
maximum=max_images,
|
| 19 |
-
value=
|
| 20 |
step=1)
|
| 21 |
image_resolution = gr.Slider(label='Image Resolution',
|
| 22 |
minimum=256,
|
|
@@ -29,22 +31,21 @@ def create_demo(process, max_images=12):
|
|
| 29 |
maximum=1024,
|
| 30 |
value=512,
|
| 31 |
step=1)
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
seed = gr.Slider(label='Seed',
|
| 43 |
minimum=-1,
|
| 44 |
maximum=2147483647,
|
| 45 |
step=1,
|
| 46 |
randomize=True)
|
| 47 |
-
eta = gr.Number(label='eta (DDIM)', value=0.0)
|
| 48 |
a_prompt = gr.Textbox(
|
| 49 |
label='Added Prompt',
|
| 50 |
value='best quality, extremely detailed')
|
|
@@ -54,16 +55,33 @@ def create_demo(process, max_images=12):
|
|
| 54 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 55 |
)
|
| 56 |
with gr.Column():
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
input_image,
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
]
|
|
|
|
| 65 |
run_button.click(fn=process,
|
| 66 |
-
inputs=
|
| 67 |
-
outputs=
|
| 68 |
api_name='seg')
|
| 69 |
return demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
|
| 6 |
+
def create_demo(process, max_images=12, default_num_images=3):
|
| 7 |
with gr.Blocks() as demo:
|
| 8 |
with gr.Row():
|
| 9 |
gr.Markdown('## Control Stable Diffusion with Segmentation Maps')
|
|
|
|
| 13 |
prompt = gr.Textbox(label='Prompt')
|
| 14 |
run_button = gr.Button(label='Run')
|
| 15 |
with gr.Accordion('Advanced options', open=False):
|
| 16 |
+
is_segmentation_map = gr.Checkbox(
|
| 17 |
+
label='Is segmentation map', value=False)
|
| 18 |
num_samples = gr.Slider(label='Images',
|
| 19 |
minimum=1,
|
| 20 |
maximum=max_images,
|
| 21 |
+
value=default_num_images,
|
| 22 |
step=1)
|
| 23 |
image_resolution = gr.Slider(label='Image Resolution',
|
| 24 |
minimum=256,
|
|
|
|
| 31 |
maximum=1024,
|
| 32 |
value=512,
|
| 33 |
step=1)
|
| 34 |
+
num_steps = gr.Slider(label='Steps',
|
| 35 |
+
minimum=1,
|
| 36 |
+
maximum=100,
|
| 37 |
+
value=20,
|
| 38 |
+
step=1)
|
| 39 |
+
guidance_scale = gr.Slider(label='Guidance Scale',
|
| 40 |
+
minimum=0.1,
|
| 41 |
+
maximum=30.0,
|
| 42 |
+
value=9.0,
|
| 43 |
+
step=0.1)
|
| 44 |
seed = gr.Slider(label='Seed',
|
| 45 |
minimum=-1,
|
| 46 |
maximum=2147483647,
|
| 47 |
step=1,
|
| 48 |
randomize=True)
|
|
|
|
| 49 |
a_prompt = gr.Textbox(
|
| 50 |
label='Added Prompt',
|
| 51 |
value='best quality, extremely detailed')
|
|
|
|
| 55 |
'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
| 56 |
)
|
| 57 |
with gr.Column():
|
| 58 |
+
result = gr.Gallery(label='Output',
|
| 59 |
+
show_label=False,
|
| 60 |
+
elem_id='gallery').style(grid=2,
|
| 61 |
+
height='auto')
|
| 62 |
+
inputs = [
|
| 63 |
+
input_image,
|
| 64 |
+
prompt,
|
| 65 |
+
a_prompt,
|
| 66 |
+
n_prompt,
|
| 67 |
+
num_samples,
|
| 68 |
+
image_resolution,
|
| 69 |
+
detect_resolution,
|
| 70 |
+
num_steps,
|
| 71 |
+
guidance_scale,
|
| 72 |
+
seed,
|
| 73 |
+
is_segmentation_map,
|
| 74 |
]
|
| 75 |
+
prompt.submit(fn=process, inputs=inputs, outputs=result)
|
| 76 |
run_button.click(fn=process,
|
| 77 |
+
inputs=inputs,
|
| 78 |
+
outputs=result,
|
| 79 |
api_name='seg')
|
| 80 |
return demo
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
if __name__ == '__main__':
|
| 84 |
+
from model import Model
|
| 85 |
+
model = Model()
|
| 86 |
+
demo = create_demo(model.process_seg)
|
| 87 |
+
demo.queue().launch()
|
model.py
CHANGED
|
@@ -3,21 +3,20 @@
|
|
| 3 |
from __future__ import annotations
|
| 4 |
|
| 5 |
import pathlib
|
| 6 |
-
import random
|
| 7 |
-
import shlex
|
| 8 |
-
import subprocess
|
| 9 |
import sys
|
| 10 |
|
| 11 |
import cv2
|
| 12 |
-
import einops
|
| 13 |
import numpy as np
|
|
|
|
| 14 |
import torch
|
| 15 |
-
from
|
| 16 |
-
|
|
|
|
| 17 |
|
| 18 |
-
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
import config
|
| 21 |
from annotator.canny import apply_canny
|
| 22 |
from annotator.hed import apply_hed, nms
|
| 23 |
from annotator.midas import apply_midas
|
|
@@ -25,733 +24,600 @@ from annotator.mlsd import apply_mlsd
|
|
| 25 |
from annotator.openpose import apply_openpose
|
| 26 |
from annotator.uniformer import apply_uniformer
|
| 27 |
from annotator.util import HWC3, resize_image
|
| 28 |
-
from cldm.model import create_model, load_state_dict
|
| 29 |
-
from ldm.models.diffusion.ddim import DDIMSampler
|
| 30 |
from share import *
|
| 31 |
|
| 32 |
-
|
| 33 |
-
'canny': '
|
| 34 |
-
'hough': '
|
| 35 |
-
'hed': '
|
| 36 |
-
'scribble': '
|
| 37 |
-
'pose': '
|
| 38 |
-
'seg': '
|
| 39 |
-
'depth': '
|
| 40 |
-
'normal': '
|
| 41 |
}
|
| 42 |
-
MODEL_REPO = 'webui/ControlNet-modules-safetensors'
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
| 47 |
|
| 48 |
|
| 49 |
class Model:
|
| 50 |
def __init__(self,
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
self.
|
| 54 |
-
'cuda:0' if torch.cuda.is_available() else 'cpu')
|
| 55 |
-
self.model = create_model(model_config_path).to(self.device)
|
| 56 |
-
self.ddim_sampler = DDIMSampler(self.model)
|
| 57 |
self.task_name = ''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
-
|
| 60 |
-
self.model_dir = pathlib.Path(model_dir)
|
| 61 |
-
self.model_dir.mkdir(exist_ok=True, parents=True)
|
| 62 |
-
|
| 63 |
-
self.download_models()
|
| 64 |
-
self.set_base_model(DEFAULT_BASE_MODEL_REPO,
|
| 65 |
-
DEFAULT_BASE_MODEL_FILENAME)
|
| 66 |
-
|
| 67 |
-
def set_base_model(self, model_id: str, filename: str) -> str:
|
| 68 |
-
if not model_id or not filename:
|
| 69 |
-
return self.base_model_url
|
| 70 |
-
base_model_url = hf_hub_url(model_id, filename)
|
| 71 |
-
if base_model_url != self.base_model_url:
|
| 72 |
-
self.load_base_model(base_model_url)
|
| 73 |
-
self.base_model_url = base_model_url
|
| 74 |
-
return self.base_model_url
|
| 75 |
-
|
| 76 |
-
def download_base_model(self, model_url: str) -> pathlib.Path:
|
| 77 |
-
self.model_dir.mkdir(exist_ok=True, parents=True)
|
| 78 |
-
model_name = model_url.split('/')[-1]
|
| 79 |
-
out_path = self.model_dir / model_name
|
| 80 |
-
if not out_path.exists():
|
| 81 |
-
subprocess.run(shlex.split(f'wget {model_url} -O {out_path}'))
|
| 82 |
-
return out_path
|
| 83 |
-
|
| 84 |
-
def load_base_model(self, model_url: str) -> None:
|
| 85 |
-
model_path = self.download_base_model(model_url)
|
| 86 |
-
self.model.load_state_dict(load_state_dict(model_path,
|
| 87 |
-
location=self.device.type),
|
| 88 |
-
strict=False)
|
| 89 |
-
|
| 90 |
-
def load_weight(self, task_name: str) -> None:
|
| 91 |
if task_name == self.task_name:
|
| 92 |
return
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
| 96 |
self.task_name = task_name
|
| 97 |
|
| 98 |
-
def
|
| 99 |
-
if
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
@torch.inference_mode()
|
| 113 |
-
def process_canny(
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
if config.save_memory:
|
| 163 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 164 |
-
|
| 165 |
-
x_samples = self.model.decode_first_stage(samples)
|
| 166 |
-
x_samples = (
|
| 167 |
-
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
|
| 168 |
-
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 169 |
-
|
| 170 |
-
results = [x_samples[i] for i in range(num_samples)]
|
| 171 |
-
return [255 - detected_map] + results
|
| 172 |
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
num_samples, image_resolution, detect_resolution,
|
| 176 |
-
ddim_steps, scale, seed, eta, value_threshold,
|
| 177 |
-
distance_threshold):
|
| 178 |
-
self.load_weight('hough')
|
| 179 |
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
value_threshold, distance_threshold)
|
| 183 |
-
detected_map = HWC3(detected_map)
|
| 184 |
-
img = resize_image(input_image, image_resolution)
|
| 185 |
-
H, W, C = img.shape
|
| 186 |
-
|
| 187 |
-
detected_map = cv2.resize(detected_map, (W, H),
|
| 188 |
-
interpolation=cv2.INTER_NEAREST)
|
| 189 |
-
|
| 190 |
-
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
| 191 |
-
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
| 192 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 193 |
-
|
| 194 |
-
if seed == -1:
|
| 195 |
-
seed = random.randint(0, 65535)
|
| 196 |
-
seed_everything(seed)
|
| 197 |
-
|
| 198 |
-
if config.save_memory:
|
| 199 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 200 |
-
|
| 201 |
-
cond = {
|
| 202 |
-
'c_concat': [control],
|
| 203 |
-
'c_crossattn': [
|
| 204 |
-
self.model.get_learned_conditioning(
|
| 205 |
-
[prompt + ', ' + a_prompt] * num_samples)
|
| 206 |
-
]
|
| 207 |
-
}
|
| 208 |
-
un_cond = {
|
| 209 |
-
'c_concat': [control],
|
| 210 |
-
'c_crossattn':
|
| 211 |
-
[self.model.get_learned_conditioning([n_prompt] * num_samples)]
|
| 212 |
-
}
|
| 213 |
-
shape = (4, H // 8, W // 8)
|
| 214 |
-
|
| 215 |
-
if config.save_memory:
|
| 216 |
-
self.model.low_vram_shift(is_diffusing=True)
|
| 217 |
-
|
| 218 |
-
samples, intermediates = self.ddim_sampler.sample(
|
| 219 |
-
ddim_steps,
|
| 220 |
-
num_samples,
|
| 221 |
-
shape,
|
| 222 |
-
cond,
|
| 223 |
-
verbose=False,
|
| 224 |
-
eta=eta,
|
| 225 |
-
unconditional_guidance_scale=scale,
|
| 226 |
-
unconditional_conditioning=un_cond)
|
| 227 |
-
|
| 228 |
-
if config.save_memory:
|
| 229 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 230 |
-
|
| 231 |
-
x_samples = self.model.decode_first_stage(samples)
|
| 232 |
-
x_samples = (
|
| 233 |
-
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
|
| 234 |
-
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 235 |
-
|
| 236 |
-
results = [x_samples[i] for i in range(num_samples)]
|
| 237 |
-
return [
|
| 238 |
-
255 - cv2.dilate(detected_map,
|
| 239 |
-
np.ones(shape=(3, 3), dtype=np.uint8),
|
| 240 |
-
iterations=1)
|
| 241 |
-
] + results
|
| 242 |
|
| 243 |
@torch.inference_mode()
|
| 244 |
-
def
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
input_image = HWC3(input_image)
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
H, W
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
| 259 |
-
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
| 260 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 261 |
-
|
| 262 |
-
if seed == -1:
|
| 263 |
-
seed = random.randint(0, 65535)
|
| 264 |
-
seed_everything(seed)
|
| 265 |
-
|
| 266 |
-
if config.save_memory:
|
| 267 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 268 |
-
|
| 269 |
-
cond = {
|
| 270 |
-
'c_concat': [control],
|
| 271 |
-
'c_crossattn': [
|
| 272 |
-
self.model.get_learned_conditioning(
|
| 273 |
-
[prompt + ', ' + a_prompt] * num_samples)
|
| 274 |
-
]
|
| 275 |
-
}
|
| 276 |
-
un_cond = {
|
| 277 |
-
'c_concat': [control],
|
| 278 |
-
'c_crossattn':
|
| 279 |
-
[self.model.get_learned_conditioning([n_prompt] * num_samples)]
|
| 280 |
-
}
|
| 281 |
-
shape = (4, H // 8, W // 8)
|
| 282 |
-
|
| 283 |
-
if config.save_memory:
|
| 284 |
-
self.model.low_vram_shift(is_diffusing=True)
|
| 285 |
-
|
| 286 |
-
samples, intermediates = self.ddim_sampler.sample(
|
| 287 |
-
ddim_steps,
|
| 288 |
-
num_samples,
|
| 289 |
-
shape,
|
| 290 |
-
cond,
|
| 291 |
-
verbose=False,
|
| 292 |
-
eta=eta,
|
| 293 |
-
unconditional_guidance_scale=scale,
|
| 294 |
-
unconditional_conditioning=un_cond)
|
| 295 |
-
|
| 296 |
-
if config.save_memory:
|
| 297 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 298 |
-
|
| 299 |
-
x_samples = self.model.decode_first_stage(samples)
|
| 300 |
-
x_samples = (
|
| 301 |
-
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
|
| 302 |
-
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 303 |
-
|
| 304 |
-
results = [x_samples[i] for i in range(num_samples)]
|
| 305 |
-
return [detected_map] + results
|
| 306 |
|
| 307 |
@torch.inference_mode()
|
| 308 |
-
def
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
self.
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
num_samples,
|
| 350 |
-
shape,
|
| 351 |
-
cond,
|
| 352 |
-
verbose=False,
|
| 353 |
-
eta=eta,
|
| 354 |
-
unconditional_guidance_scale=scale,
|
| 355 |
-
unconditional_conditioning=un_cond)
|
| 356 |
-
|
| 357 |
-
if config.save_memory:
|
| 358 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 359 |
-
|
| 360 |
-
x_samples = self.model.decode_first_stage(samples)
|
| 361 |
-
x_samples = (
|
| 362 |
-
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
|
| 363 |
-
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 364 |
-
|
| 365 |
-
results = [x_samples[i] for i in range(num_samples)]
|
| 366 |
-
return [255 - detected_map] + results
|
| 367 |
|
| 368 |
@torch.inference_mode()
|
| 369 |
-
def
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
samples, intermediates = self.ddim_sampler.sample(
|
| 410 |
-
ddim_steps,
|
| 411 |
-
num_samples,
|
| 412 |
-
shape,
|
| 413 |
-
cond,
|
| 414 |
-
verbose=False,
|
| 415 |
-
eta=eta,
|
| 416 |
-
unconditional_guidance_scale=scale,
|
| 417 |
-
unconditional_conditioning=un_cond)
|
| 418 |
-
|
| 419 |
-
if config.save_memory:
|
| 420 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 421 |
-
|
| 422 |
-
x_samples = self.model.decode_first_stage(samples)
|
| 423 |
-
x_samples = (
|
| 424 |
-
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
|
| 425 |
-
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 426 |
-
|
| 427 |
-
results = [x_samples[i] for i in range(num_samples)]
|
| 428 |
-
return [255 - detected_map] + results
|
| 429 |
|
| 430 |
@torch.inference_mode()
|
| 431 |
-
def
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 436 |
input_image = HWC3(input_image)
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
H, W
|
| 441 |
-
|
| 442 |
-
detected_map = cv2.resize(detected_map, (W, H),
|
| 443 |
-
interpolation=cv2.INTER_LINEAR)
|
| 444 |
-
detected_map = nms(detected_map, 127, 3.0)
|
| 445 |
-
detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0)
|
| 446 |
-
detected_map[detected_map > 4] = 255
|
| 447 |
-
detected_map[detected_map < 255] = 0
|
| 448 |
-
|
| 449 |
-
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
| 450 |
-
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
| 451 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 452 |
-
|
| 453 |
-
if seed == -1:
|
| 454 |
-
seed = random.randint(0, 65535)
|
| 455 |
-
seed_everything(seed)
|
| 456 |
-
|
| 457 |
-
if config.save_memory:
|
| 458 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 459 |
-
|
| 460 |
-
cond = {
|
| 461 |
-
'c_concat': [control],
|
| 462 |
-
'c_crossattn': [
|
| 463 |
-
self.model.get_learned_conditioning(
|
| 464 |
-
[prompt + ', ' + a_prompt] * num_samples)
|
| 465 |
-
]
|
| 466 |
-
}
|
| 467 |
-
un_cond = {
|
| 468 |
-
'c_concat': [control],
|
| 469 |
-
'c_crossattn':
|
| 470 |
-
[self.model.get_learned_conditioning([n_prompt] * num_samples)]
|
| 471 |
-
}
|
| 472 |
-
shape = (4, H // 8, W // 8)
|
| 473 |
-
|
| 474 |
-
if config.save_memory:
|
| 475 |
-
self.model.low_vram_shift(is_diffusing=True)
|
| 476 |
-
|
| 477 |
-
samples, intermediates = self.ddim_sampler.sample(
|
| 478 |
-
ddim_steps,
|
| 479 |
-
num_samples,
|
| 480 |
-
shape,
|
| 481 |
-
cond,
|
| 482 |
-
verbose=False,
|
| 483 |
-
eta=eta,
|
| 484 |
-
unconditional_guidance_scale=scale,
|
| 485 |
-
unconditional_conditioning=un_cond)
|
| 486 |
-
|
| 487 |
-
if config.save_memory:
|
| 488 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 489 |
-
|
| 490 |
-
x_samples = self.model.decode_first_stage(samples)
|
| 491 |
-
x_samples = (
|
| 492 |
-
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
|
| 493 |
-
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 494 |
-
|
| 495 |
-
results = [x_samples[i] for i in range(num_samples)]
|
| 496 |
-
return [255 - detected_map] + results
|
| 497 |
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
|
|
|
| 503 |
|
| 504 |
-
|
| 505 |
-
detected_map, _ = apply_openpose(
|
| 506 |
-
resize_image(input_image, detect_resolution))
|
| 507 |
-
detected_map = HWC3(detected_map)
|
| 508 |
-
img = resize_image(input_image, image_resolution)
|
| 509 |
-
H, W, C = img.shape
|
| 510 |
-
|
| 511 |
-
detected_map = cv2.resize(detected_map, (W, H),
|
| 512 |
-
interpolation=cv2.INTER_NEAREST)
|
| 513 |
-
|
| 514 |
-
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
| 515 |
-
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
| 516 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 517 |
-
|
| 518 |
-
if seed == -1:
|
| 519 |
-
seed = random.randint(0, 65535)
|
| 520 |
-
seed_everything(seed)
|
| 521 |
-
|
| 522 |
-
if config.save_memory:
|
| 523 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 524 |
-
|
| 525 |
-
cond = {
|
| 526 |
-
'c_concat': [control],
|
| 527 |
-
'c_crossattn': [
|
| 528 |
-
self.model.get_learned_conditioning(
|
| 529 |
-
[prompt + ', ' + a_prompt] * num_samples)
|
| 530 |
-
]
|
| 531 |
-
}
|
| 532 |
-
un_cond = {
|
| 533 |
-
'c_concat': [control],
|
| 534 |
-
'c_crossattn':
|
| 535 |
-
[self.model.get_learned_conditioning([n_prompt] * num_samples)]
|
| 536 |
-
}
|
| 537 |
-
shape = (4, H // 8, W // 8)
|
| 538 |
-
|
| 539 |
-
if config.save_memory:
|
| 540 |
-
self.model.low_vram_shift(is_diffusing=True)
|
| 541 |
-
|
| 542 |
-
samples, intermediates = self.ddim_sampler.sample(
|
| 543 |
-
ddim_steps,
|
| 544 |
-
num_samples,
|
| 545 |
-
shape,
|
| 546 |
-
cond,
|
| 547 |
-
verbose=False,
|
| 548 |
-
eta=eta,
|
| 549 |
-
unconditional_guidance_scale=scale,
|
| 550 |
-
unconditional_conditioning=un_cond)
|
| 551 |
-
|
| 552 |
-
if config.save_memory:
|
| 553 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 554 |
-
|
| 555 |
-
x_samples = self.model.decode_first_stage(samples)
|
| 556 |
-
x_samples = (
|
| 557 |
-
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
|
| 558 |
-
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 559 |
-
|
| 560 |
-
results = [x_samples[i] for i in range(num_samples)]
|
| 561 |
-
return [detected_map] + results
|
| 562 |
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
image_resolution, detect_resolution, ddim_steps, scale,
|
| 566 |
-
seed, eta):
|
| 567 |
-
self.load_weight('seg')
|
| 568 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 569 |
input_image = HWC3(input_image)
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
seed = random.randint(0, 65535)
|
| 584 |
-
seed_everything(seed)
|
| 585 |
-
|
| 586 |
-
if config.save_memory:
|
| 587 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 588 |
-
|
| 589 |
-
cond = {
|
| 590 |
-
'c_concat': [control],
|
| 591 |
-
'c_crossattn': [
|
| 592 |
-
self.model.get_learned_conditioning(
|
| 593 |
-
[prompt + ', ' + a_prompt] * num_samples)
|
| 594 |
-
]
|
| 595 |
-
}
|
| 596 |
-
un_cond = {
|
| 597 |
-
'c_concat': [control],
|
| 598 |
-
'c_crossattn':
|
| 599 |
-
[self.model.get_learned_conditioning([n_prompt] * num_samples)]
|
| 600 |
-
}
|
| 601 |
-
shape = (4, H // 8, W // 8)
|
| 602 |
-
|
| 603 |
-
if config.save_memory:
|
| 604 |
-
self.model.low_vram_shift(is_diffusing=True)
|
| 605 |
-
|
| 606 |
-
samples, intermediates = self.ddim_sampler.sample(
|
| 607 |
-
ddim_steps,
|
| 608 |
-
num_samples,
|
| 609 |
-
shape,
|
| 610 |
-
cond,
|
| 611 |
-
verbose=False,
|
| 612 |
-
eta=eta,
|
| 613 |
-
unconditional_guidance_scale=scale,
|
| 614 |
-
unconditional_conditioning=un_cond)
|
| 615 |
-
|
| 616 |
-
if config.save_memory:
|
| 617 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 618 |
-
|
| 619 |
-
x_samples = self.model.decode_first_stage(samples)
|
| 620 |
-
x_samples = (
|
| 621 |
-
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
|
| 622 |
-
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 623 |
-
|
| 624 |
-
results = [x_samples[i] for i in range(num_samples)]
|
| 625 |
-
return [detected_map] + results
|
| 626 |
|
| 627 |
@torch.inference_mode()
|
| 628 |
-
def
|
| 629 |
-
|
| 630 |
-
|
| 631 |
-
|
| 632 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 633 |
input_image = HWC3(input_image)
|
| 634 |
-
|
| 635 |
-
|
| 636 |
-
|
| 637 |
-
|
| 638 |
-
|
| 639 |
-
|
| 640 |
-
|
| 641 |
-
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
|
| 645 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 646 |
-
|
| 647 |
-
if seed == -1:
|
| 648 |
-
seed = random.randint(0, 65535)
|
| 649 |
-
seed_everything(seed)
|
| 650 |
-
|
| 651 |
-
if config.save_memory:
|
| 652 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 653 |
-
|
| 654 |
-
cond = {
|
| 655 |
-
'c_concat': [control],
|
| 656 |
-
'c_crossattn': [
|
| 657 |
-
self.model.get_learned_conditioning(
|
| 658 |
-
[prompt + ', ' + a_prompt] * num_samples)
|
| 659 |
-
]
|
| 660 |
-
}
|
| 661 |
-
un_cond = {
|
| 662 |
-
'c_concat': [control],
|
| 663 |
-
'c_crossattn':
|
| 664 |
-
[self.model.get_learned_conditioning([n_prompt] * num_samples)]
|
| 665 |
-
}
|
| 666 |
-
shape = (4, H // 8, W // 8)
|
| 667 |
-
|
| 668 |
-
if config.save_memory:
|
| 669 |
-
self.model.low_vram_shift(is_diffusing=True)
|
| 670 |
-
|
| 671 |
-
samples, intermediates = self.ddim_sampler.sample(
|
| 672 |
-
ddim_steps,
|
| 673 |
-
num_samples,
|
| 674 |
-
shape,
|
| 675 |
-
cond,
|
| 676 |
-
verbose=False,
|
| 677 |
-
eta=eta,
|
| 678 |
-
unconditional_guidance_scale=scale,
|
| 679 |
-
unconditional_conditioning=un_cond)
|
| 680 |
-
|
| 681 |
-
if config.save_memory:
|
| 682 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 683 |
-
|
| 684 |
-
x_samples = self.model.decode_first_stage(samples)
|
| 685 |
-
x_samples = (
|
| 686 |
-
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
|
| 687 |
-
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 688 |
-
|
| 689 |
-
results = [x_samples[i] for i in range(num_samples)]
|
| 690 |
-
return [detected_map] + results
|
| 691 |
|
| 692 |
@torch.inference_mode()
|
| 693 |
-
def
|
| 694 |
-
|
| 695 |
-
|
| 696 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 697 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 698 |
input_image = HWC3(input_image)
|
| 699 |
-
|
| 700 |
-
|
| 701 |
-
|
| 702 |
-
|
| 703 |
-
|
| 704 |
-
|
| 705 |
-
|
| 706 |
-
|
| 707 |
-
|
| 708 |
-
|
| 709 |
-
|
| 710 |
-
|
| 711 |
-
|
| 712 |
-
|
| 713 |
-
|
| 714 |
-
|
| 715 |
-
|
| 716 |
-
|
| 717 |
-
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
|
| 724 |
-
|
| 725 |
-
|
| 726 |
-
|
| 727 |
-
|
| 728 |
-
|
| 729 |
-
|
| 730 |
-
|
| 731 |
-
|
| 732 |
-
|
| 733 |
-
|
| 734 |
-
|
| 735 |
-
|
| 736 |
-
|
| 737 |
-
|
| 738 |
-
|
| 739 |
-
|
| 740 |
-
|
| 741 |
-
|
| 742 |
-
|
| 743 |
-
|
| 744 |
-
|
| 745 |
-
|
| 746 |
-
|
| 747 |
-
|
| 748 |
-
if config.save_memory:
|
| 749 |
-
self.model.low_vram_shift(is_diffusing=False)
|
| 750 |
-
|
| 751 |
-
x_samples = self.model.decode_first_stage(samples)
|
| 752 |
-
x_samples = (
|
| 753 |
-
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
|
| 754 |
-
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 755 |
-
|
| 756 |
-
results = [x_samples[i] for i in range(num_samples)]
|
| 757 |
-
return [detected_map] + results
|
|
|
|
| 3 |
from __future__ import annotations
|
| 4 |
|
| 5 |
import pathlib
|
|
|
|
|
|
|
|
|
|
| 6 |
import sys
|
| 7 |
|
| 8 |
import cv2
|
|
|
|
| 9 |
import numpy as np
|
| 10 |
+
import PIL.Image
|
| 11 |
import torch
|
| 12 |
+
from diffusers import (ControlNetModel, DiffusionPipeline,
|
| 13 |
+
StableDiffusionControlNetPipeline,
|
| 14 |
+
UniPCMultistepScheduler)
|
| 15 |
|
| 16 |
+
repo_dir = pathlib.Path(__file__).parent
|
| 17 |
+
submodule_dir = repo_dir / 'ControlNet'
|
| 18 |
+
sys.path.append(submodule_dir.as_posix())
|
| 19 |
|
|
|
|
| 20 |
from annotator.canny import apply_canny
|
| 21 |
from annotator.hed import apply_hed, nms
|
| 22 |
from annotator.midas import apply_midas
|
|
|
|
| 24 |
from annotator.openpose import apply_openpose
|
| 25 |
from annotator.uniformer import apply_uniformer
|
| 26 |
from annotator.util import HWC3, resize_image
|
|
|
|
|
|
|
| 27 |
from share import *
|
| 28 |
|
| 29 |
+
CONTROLNET_MODEL_IDS = {
|
| 30 |
+
'canny': 'lllyasviel/sd-controlnet-canny',
|
| 31 |
+
'hough': 'lllyasviel/sd-controlnet-mlsd',
|
| 32 |
+
'hed': 'lllyasviel/sd-controlnet-hed',
|
| 33 |
+
'scribble': 'lllyasviel/sd-controlnet-scribble',
|
| 34 |
+
'pose': 'lllyasviel/sd-controlnet-openpose',
|
| 35 |
+
'seg': 'lllyasviel/sd-controlnet-seg',
|
| 36 |
+
'depth': 'lllyasviel/sd-controlnet-depth',
|
| 37 |
+
'normal': 'lllyasviel/sd-controlnet-normal',
|
| 38 |
}
|
|
|
|
| 39 |
|
| 40 |
+
|
| 41 |
+
def download_all_controlnet_weights() -> None:
|
| 42 |
+
for model_id in CONTROLNET_MODEL_IDS.values():
|
| 43 |
+
ControlNetModel.from_pretrained(model_id)
|
| 44 |
|
| 45 |
|
| 46 |
class Model:
|
| 47 |
def __init__(self,
|
| 48 |
+
base_model_id: str = 'runwayml/stable-diffusion-v1-5',
|
| 49 |
+
task_name: str = 'canny'):
|
| 50 |
+
self.base_model_id = ''
|
|
|
|
|
|
|
|
|
|
| 51 |
self.task_name = ''
|
| 52 |
+
self.pipe = self.load_pipe(base_model_id, task_name)
|
| 53 |
+
|
| 54 |
+
def load_pipe(self, base_model_id: str, task_name) -> DiffusionPipeline:
|
| 55 |
+
if base_model_id == self.base_model_id and task_name == self.task_name:
|
| 56 |
+
return self.pipe
|
| 57 |
+
model_id = CONTROLNET_MODEL_IDS[task_name]
|
| 58 |
+
controlnet = ControlNetModel.from_pretrained(model_id,
|
| 59 |
+
torch_dtype=torch.float16)
|
| 60 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 61 |
+
base_model_id,
|
| 62 |
+
safety_checker=None,
|
| 63 |
+
controlnet=controlnet,
|
| 64 |
+
torch_dtype=torch.float16)
|
| 65 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(
|
| 66 |
+
pipe.scheduler.config)
|
| 67 |
+
pipe.enable_xformers_memory_efficient_attention()
|
| 68 |
+
pipe.enable_model_cpu_offload()
|
| 69 |
+
self.base_model_id = base_model_id
|
| 70 |
+
self.task_name = task_name
|
| 71 |
+
return pipe
|
| 72 |
+
|
| 73 |
+
def set_base_model(self, base_model_id: str) -> str:
|
| 74 |
+
self.pipe = self.load_pipe(base_model_id, self.task_name)
|
| 75 |
+
return self.base_model_id
|
| 76 |
|
| 77 |
+
def load_controlnet_weight(self, task_name: str) -> None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
if task_name == self.task_name:
|
| 79 |
return
|
| 80 |
+
model_id = CONTROLNET_MODEL_IDS[task_name]
|
| 81 |
+
controlnet = ControlNetModel.from_pretrained(model_id,
|
| 82 |
+
torch_dtype=torch.float16)
|
| 83 |
+
from accelerate import cpu_offload_with_hook
|
| 84 |
+
cpu_offload_with_hook(controlnet, torch.device('cuda:0'))
|
| 85 |
+
self.pipe.controlnet = controlnet
|
| 86 |
self.task_name = task_name
|
| 87 |
|
| 88 |
+
def get_prompt(self, prompt: str, additional_prompt: str) -> str:
|
| 89 |
+
if not prompt:
|
| 90 |
+
prompt = additional_prompt
|
| 91 |
+
else:
|
| 92 |
+
prompt = f'{prompt}, {additional_prompt}'
|
| 93 |
+
return prompt
|
| 94 |
+
|
| 95 |
+
def run_pipe(
|
| 96 |
+
self,
|
| 97 |
+
prompt: str,
|
| 98 |
+
negative_prompt: str,
|
| 99 |
+
control_image: PIL.Image.Image,
|
| 100 |
+
num_images: int,
|
| 101 |
+
num_steps: int,
|
| 102 |
+
guidance_scale: float,
|
| 103 |
+
seed: int,
|
| 104 |
+
) -> list[PIL.Image.Image]:
|
| 105 |
+
generator = torch.Generator().manual_seed(seed)
|
| 106 |
+
return self.pipe(prompt=prompt,
|
| 107 |
+
negative_prompt=negative_prompt,
|
| 108 |
+
guidance_scale=guidance_scale,
|
| 109 |
+
num_images_per_prompt=num_images,
|
| 110 |
+
num_inference_steps=num_steps,
|
| 111 |
+
generator=generator,
|
| 112 |
+
image=control_image).images
|
| 113 |
+
|
| 114 |
+
@staticmethod
|
| 115 |
+
def preprocess_canny(
|
| 116 |
+
input_image: np.ndarray,
|
| 117 |
+
image_resolution: int,
|
| 118 |
+
low_threshold: int,
|
| 119 |
+
high_threshold: int,
|
| 120 |
+
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
| 121 |
+
image = resize_image(HWC3(input_image), image_resolution)
|
| 122 |
+
control_image = apply_canny(image, low_threshold, high_threshold)
|
| 123 |
+
control_image = HWC3(control_image)
|
| 124 |
+
vis_control_image = 255 - control_image
|
| 125 |
+
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
| 126 |
+
vis_control_image)
|
| 127 |
|
| 128 |
@torch.inference_mode()
|
| 129 |
+
def process_canny(
|
| 130 |
+
self,
|
| 131 |
+
input_image: np.ndarray,
|
| 132 |
+
prompt: str,
|
| 133 |
+
additional_prompt: str,
|
| 134 |
+
negative_prompt: str,
|
| 135 |
+
num_images: int,
|
| 136 |
+
image_resolution: int,
|
| 137 |
+
num_steps: int,
|
| 138 |
+
guidance_scale: float,
|
| 139 |
+
seed: int,
|
| 140 |
+
low_threshold: int,
|
| 141 |
+
high_threshold: int,
|
| 142 |
+
) -> list[PIL.Image.Image]:
|
| 143 |
+
control_image, vis_control_image = self.preprocess_canny(
|
| 144 |
+
input_image=input_image,
|
| 145 |
+
image_resolution=image_resolution,
|
| 146 |
+
low_threshold=low_threshold,
|
| 147 |
+
high_threshold=high_threshold,
|
| 148 |
+
)
|
| 149 |
+
self.load_controlnet_weight('canny')
|
| 150 |
+
results = self.run_pipe(
|
| 151 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
| 152 |
+
negative_prompt=negative_prompt,
|
| 153 |
+
control_image=control_image,
|
| 154 |
+
num_images=num_images,
|
| 155 |
+
num_steps=num_steps,
|
| 156 |
+
guidance_scale=guidance_scale,
|
| 157 |
+
seed=seed,
|
| 158 |
+
)
|
| 159 |
+
return [vis_control_image] + results
|
| 160 |
+
|
| 161 |
+
@staticmethod
|
| 162 |
+
def preprocess_hough(
|
| 163 |
+
input_image: np.ndarray,
|
| 164 |
+
image_resolution: int,
|
| 165 |
+
detect_resolution: int,
|
| 166 |
+
value_threshold: float,
|
| 167 |
+
distance_threshold: float,
|
| 168 |
+
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
| 169 |
+
input_image = HWC3(input_image)
|
| 170 |
+
control_image = apply_mlsd(
|
| 171 |
+
resize_image(input_image, detect_resolution), value_threshold,
|
| 172 |
+
distance_threshold)
|
| 173 |
+
control_image = HWC3(control_image)
|
| 174 |
+
image = resize_image(input_image, image_resolution)
|
| 175 |
+
H, W = image.shape[:2]
|
| 176 |
+
control_image = cv2.resize(control_image, (W, H),
|
| 177 |
+
interpolation=cv2.INTER_NEAREST)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
+
vis_control_image = 255 - cv2.dilate(
|
| 180 |
+
control_image, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
+
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
| 183 |
+
vis_control_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
|
| 185 |
@torch.inference_mode()
|
| 186 |
+
def process_hough(
|
| 187 |
+
self,
|
| 188 |
+
input_image: np.ndarray,
|
| 189 |
+
prompt: str,
|
| 190 |
+
additional_prompt: str,
|
| 191 |
+
negative_prompt: str,
|
| 192 |
+
num_images: int,
|
| 193 |
+
image_resolution: int,
|
| 194 |
+
detect_resolution: int,
|
| 195 |
+
num_steps: int,
|
| 196 |
+
guidance_scale: float,
|
| 197 |
+
seed: int,
|
| 198 |
+
value_threshold: float,
|
| 199 |
+
distance_threshold: float,
|
| 200 |
+
) -> list[PIL.Image.Image]:
|
| 201 |
+
control_image, vis_control_image = self.preprocess_hough(
|
| 202 |
+
input_image=input_image,
|
| 203 |
+
image_resolution=image_resolution,
|
| 204 |
+
detect_resolution=detect_resolution,
|
| 205 |
+
value_threshold=value_threshold,
|
| 206 |
+
distance_threshold=distance_threshold,
|
| 207 |
+
)
|
| 208 |
+
self.load_controlnet_weight('hough')
|
| 209 |
+
results = self.run_pipe(
|
| 210 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
| 211 |
+
negative_prompt=negative_prompt,
|
| 212 |
+
control_image=control_image,
|
| 213 |
+
num_images=num_images,
|
| 214 |
+
num_steps=num_steps,
|
| 215 |
+
guidance_scale=guidance_scale,
|
| 216 |
+
seed=seed,
|
| 217 |
+
)
|
| 218 |
+
return [vis_control_image] + results
|
| 219 |
+
|
| 220 |
+
@staticmethod
|
| 221 |
+
def preprocess_hed(
|
| 222 |
+
input_image: np.ndarray,
|
| 223 |
+
image_resolution: int,
|
| 224 |
+
detect_resolution: int,
|
| 225 |
+
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
| 226 |
input_image = HWC3(input_image)
|
| 227 |
+
control_image = apply_hed(resize_image(input_image, detect_resolution))
|
| 228 |
+
control_image = HWC3(control_image)
|
| 229 |
+
image = resize_image(input_image, image_resolution)
|
| 230 |
+
H, W = image.shape[:2]
|
| 231 |
+
control_image = cv2.resize(control_image, (W, H),
|
| 232 |
+
interpolation=cv2.INTER_LINEAR)
|
| 233 |
+
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
| 234 |
+
control_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
|
| 236 |
@torch.inference_mode()
|
| 237 |
+
def process_hed(
|
| 238 |
+
self,
|
| 239 |
+
input_image: np.ndarray,
|
| 240 |
+
prompt: str,
|
| 241 |
+
additional_prompt: str,
|
| 242 |
+
negative_prompt: str,
|
| 243 |
+
num_images: int,
|
| 244 |
+
image_resolution: int,
|
| 245 |
+
detect_resolution: int,
|
| 246 |
+
num_steps: int,
|
| 247 |
+
guidance_scale: float,
|
| 248 |
+
seed: int,
|
| 249 |
+
) -> list[PIL.Image.Image]:
|
| 250 |
+
control_image, vis_control_image = self.preprocess_hed(
|
| 251 |
+
input_image=input_image,
|
| 252 |
+
image_resolution=image_resolution,
|
| 253 |
+
detect_resolution=detect_resolution,
|
| 254 |
+
)
|
| 255 |
+
self.load_controlnet_weight('hed')
|
| 256 |
+
results = self.run_pipe(
|
| 257 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
| 258 |
+
negative_prompt=negative_prompt,
|
| 259 |
+
control_image=control_image,
|
| 260 |
+
num_images=num_images,
|
| 261 |
+
num_steps=num_steps,
|
| 262 |
+
guidance_scale=guidance_scale,
|
| 263 |
+
seed=seed,
|
| 264 |
+
)
|
| 265 |
+
return [vis_control_image] + results
|
| 266 |
+
|
| 267 |
+
@staticmethod
|
| 268 |
+
def preprocess_scribble(
|
| 269 |
+
input_image: np.ndarray,
|
| 270 |
+
image_resolution: int,
|
| 271 |
+
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
| 272 |
+
image = resize_image(HWC3(input_image), image_resolution)
|
| 273 |
+
control_image = np.zeros_like(image, dtype=np.uint8)
|
| 274 |
+
control_image[np.min(image, axis=2) < 127] = 255
|
| 275 |
+
vis_control_image = 255 - control_image
|
| 276 |
+
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
| 277 |
+
vis_control_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 278 |
|
| 279 |
@torch.inference_mode()
|
| 280 |
+
def process_scribble(
|
| 281 |
+
self,
|
| 282 |
+
input_image: np.ndarray,
|
| 283 |
+
prompt: str,
|
| 284 |
+
additional_prompt: str,
|
| 285 |
+
negative_prompt: str,
|
| 286 |
+
num_images: int,
|
| 287 |
+
image_resolution: int,
|
| 288 |
+
num_steps: int,
|
| 289 |
+
guidance_scale: float,
|
| 290 |
+
seed: int,
|
| 291 |
+
) -> list[PIL.Image.Image]:
|
| 292 |
+
control_image, vis_control_image = self.preprocess_scribble(
|
| 293 |
+
input_image=input_image,
|
| 294 |
+
image_resolution=image_resolution,
|
| 295 |
+
)
|
| 296 |
+
self.load_controlnet_weight('scribble')
|
| 297 |
+
results = self.run_pipe(
|
| 298 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
| 299 |
+
negative_prompt=negative_prompt,
|
| 300 |
+
control_image=control_image,
|
| 301 |
+
num_images=num_images,
|
| 302 |
+
num_steps=num_steps,
|
| 303 |
+
guidance_scale=guidance_scale,
|
| 304 |
+
seed=seed,
|
| 305 |
+
)
|
| 306 |
+
return [vis_control_image] + results
|
| 307 |
+
|
| 308 |
+
@staticmethod
|
| 309 |
+
def preprocess_scribble_interactive(
|
| 310 |
+
input_image: np.ndarray,
|
| 311 |
+
image_resolution: int,
|
| 312 |
+
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
| 313 |
+
image = resize_image(HWC3(input_image['mask'][:, :, 0]),
|
| 314 |
+
image_resolution)
|
| 315 |
+
control_image = np.zeros_like(image, dtype=np.uint8)
|
| 316 |
+
control_image[np.min(image, axis=2) > 127] = 255
|
| 317 |
+
vis_control_image = 255 - control_image
|
| 318 |
+
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
| 319 |
+
vis_control_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 320 |
|
| 321 |
@torch.inference_mode()
|
| 322 |
+
def process_scribble_interactive(
|
| 323 |
+
self,
|
| 324 |
+
input_image: np.ndarray,
|
| 325 |
+
prompt: str,
|
| 326 |
+
additional_prompt: str,
|
| 327 |
+
negative_prompt: str,
|
| 328 |
+
num_images: int,
|
| 329 |
+
image_resolution: int,
|
| 330 |
+
num_steps: int,
|
| 331 |
+
guidance_scale: float,
|
| 332 |
+
seed: int,
|
| 333 |
+
) -> list[PIL.Image.Image]:
|
| 334 |
+
control_image, vis_control_image = self.preprocess_scribble_interactive(
|
| 335 |
+
input_image=input_image,
|
| 336 |
+
image_resolution=image_resolution,
|
| 337 |
+
)
|
| 338 |
+
self.load_controlnet_weight('scribble')
|
| 339 |
+
results = self.run_pipe(
|
| 340 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
| 341 |
+
negative_prompt=negative_prompt,
|
| 342 |
+
control_image=control_image,
|
| 343 |
+
num_images=num_images,
|
| 344 |
+
num_steps=num_steps,
|
| 345 |
+
guidance_scale=guidance_scale,
|
| 346 |
+
seed=seed,
|
| 347 |
+
)
|
| 348 |
+
return [vis_control_image] + results
|
| 349 |
+
|
| 350 |
+
@staticmethod
|
| 351 |
+
def preprocess_fake_scribble(
|
| 352 |
+
input_image: np.ndarray,
|
| 353 |
+
image_resolution: int,
|
| 354 |
+
detect_resolution: int,
|
| 355 |
+
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
| 356 |
input_image = HWC3(input_image)
|
| 357 |
+
control_image = apply_hed(resize_image(input_image, detect_resolution))
|
| 358 |
+
control_image = HWC3(control_image)
|
| 359 |
+
image = resize_image(input_image, image_resolution)
|
| 360 |
+
H, W = image.shape[:2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 361 |
|
| 362 |
+
control_image = cv2.resize(control_image, (W, H),
|
| 363 |
+
interpolation=cv2.INTER_LINEAR)
|
| 364 |
+
control_image = nms(control_image, 127, 3.0)
|
| 365 |
+
control_image = cv2.GaussianBlur(control_image, (0, 0), 3.0)
|
| 366 |
+
control_image[control_image > 4] = 255
|
| 367 |
+
control_image[control_image < 255] = 0
|
| 368 |
|
| 369 |
+
vis_control_image = 255 - control_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 370 |
|
| 371 |
+
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
| 372 |
+
vis_control_image)
|
|
|
|
|
|
|
|
|
|
| 373 |
|
| 374 |
+
@torch.inference_mode()
|
| 375 |
+
def process_fake_scribble(
|
| 376 |
+
self,
|
| 377 |
+
input_image: np.ndarray,
|
| 378 |
+
prompt: str,
|
| 379 |
+
additional_prompt: str,
|
| 380 |
+
negative_prompt: str,
|
| 381 |
+
num_images: int,
|
| 382 |
+
image_resolution: int,
|
| 383 |
+
detect_resolution: int,
|
| 384 |
+
num_steps: int,
|
| 385 |
+
guidance_scale: float,
|
| 386 |
+
seed: int,
|
| 387 |
+
) -> list[PIL.Image.Image]:
|
| 388 |
+
control_image, vis_control_image = self.preprocess_fake_scribble(
|
| 389 |
+
input_image=input_image,
|
| 390 |
+
image_resolution=image_resolution,
|
| 391 |
+
detect_resolution=detect_resolution,
|
| 392 |
+
)
|
| 393 |
+
self.load_controlnet_weight('scribble')
|
| 394 |
+
results = self.run_pipe(
|
| 395 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
| 396 |
+
negative_prompt=negative_prompt,
|
| 397 |
+
control_image=control_image,
|
| 398 |
+
num_images=num_images,
|
| 399 |
+
num_steps=num_steps,
|
| 400 |
+
guidance_scale=guidance_scale,
|
| 401 |
+
seed=seed,
|
| 402 |
+
)
|
| 403 |
+
return [vis_control_image] + results
|
| 404 |
+
|
| 405 |
+
@staticmethod
|
| 406 |
+
def preprocess_pose(
|
| 407 |
+
input_image: np.ndarray,
|
| 408 |
+
image_resolution: int,
|
| 409 |
+
detect_resolution: int,
|
| 410 |
+
is_pose_image: bool,
|
| 411 |
+
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
| 412 |
input_image = HWC3(input_image)
|
| 413 |
+
if not is_pose_image:
|
| 414 |
+
control_image, _ = apply_openpose(
|
| 415 |
+
resize_image(input_image, detect_resolution))
|
| 416 |
+
control_image = HWC3(control_image)
|
| 417 |
+
image = resize_image(input_image, image_resolution)
|
| 418 |
+
H, W = image.shape[:2]
|
| 419 |
+
control_image = cv2.resize(control_image, (W, H),
|
| 420 |
+
interpolation=cv2.INTER_NEAREST)
|
| 421 |
+
else:
|
| 422 |
+
control_image = input_image
|
| 423 |
+
|
| 424 |
+
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
| 425 |
+
control_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 426 |
|
| 427 |
@torch.inference_mode()
|
| 428 |
+
def process_pose(
|
| 429 |
+
self,
|
| 430 |
+
input_image: np.ndarray,
|
| 431 |
+
prompt: str,
|
| 432 |
+
additional_prompt: str,
|
| 433 |
+
negative_prompt: str,
|
| 434 |
+
num_images: int,
|
| 435 |
+
image_resolution: int,
|
| 436 |
+
detect_resolution: int,
|
| 437 |
+
num_steps: int,
|
| 438 |
+
guidance_scale: float,
|
| 439 |
+
seed: int,
|
| 440 |
+
is_pose_image: bool,
|
| 441 |
+
) -> list[PIL.Image.Image]:
|
| 442 |
+
control_image, vis_control_image = self.preprocess_pose(
|
| 443 |
+
input_image=input_image,
|
| 444 |
+
image_resolution=image_resolution,
|
| 445 |
+
detect_resolution=detect_resolution,
|
| 446 |
+
is_pose_image=is_pose_image,
|
| 447 |
+
)
|
| 448 |
+
self.load_controlnet_weight('pose')
|
| 449 |
+
results = self.run_pipe(
|
| 450 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
| 451 |
+
negative_prompt=negative_prompt,
|
| 452 |
+
control_image=control_image,
|
| 453 |
+
num_images=num_images,
|
| 454 |
+
num_steps=num_steps,
|
| 455 |
+
guidance_scale=guidance_scale,
|
| 456 |
+
seed=seed,
|
| 457 |
+
)
|
| 458 |
+
return [vis_control_image] + results
|
| 459 |
+
|
| 460 |
+
@staticmethod
|
| 461 |
+
def preprocess_seg(
|
| 462 |
+
input_image: np.ndarray,
|
| 463 |
+
image_resolution: int,
|
| 464 |
+
detect_resolution: int,
|
| 465 |
+
is_segmentation_map: bool,
|
| 466 |
+
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
| 467 |
input_image = HWC3(input_image)
|
| 468 |
+
if not is_segmentation_map:
|
| 469 |
+
control_image = apply_uniformer(
|
| 470 |
+
resize_image(input_image, detect_resolution))
|
| 471 |
+
image = resize_image(input_image, image_resolution)
|
| 472 |
+
H, W = image.shape[:2]
|
| 473 |
+
control_image = cv2.resize(control_image, (W, H),
|
| 474 |
+
interpolation=cv2.INTER_NEAREST)
|
| 475 |
+
else:
|
| 476 |
+
control_image = input_image
|
| 477 |
+
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
| 478 |
+
control_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 479 |
|
| 480 |
@torch.inference_mode()
|
| 481 |
+
def process_seg(
|
| 482 |
+
self,
|
| 483 |
+
input_image: np.ndarray,
|
| 484 |
+
prompt: str,
|
| 485 |
+
additional_prompt: str,
|
| 486 |
+
negative_prompt: str,
|
| 487 |
+
num_images: int,
|
| 488 |
+
image_resolution: int,
|
| 489 |
+
detect_resolution: int,
|
| 490 |
+
num_steps: int,
|
| 491 |
+
guidance_scale: float,
|
| 492 |
+
seed: int,
|
| 493 |
+
is_segmentation_map: bool,
|
| 494 |
+
) -> list[PIL.Image.Image]:
|
| 495 |
+
control_image, vis_control_image = self.preprocess_seg(
|
| 496 |
+
input_image=input_image,
|
| 497 |
+
image_resolution=image_resolution,
|
| 498 |
+
detect_resolution=detect_resolution,
|
| 499 |
+
is_segmentation_map=is_segmentation_map,
|
| 500 |
+
)
|
| 501 |
+
self.load_controlnet_weight('seg')
|
| 502 |
+
results = self.run_pipe(
|
| 503 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
| 504 |
+
negative_prompt=negative_prompt,
|
| 505 |
+
control_image=control_image,
|
| 506 |
+
num_images=num_images,
|
| 507 |
+
num_steps=num_steps,
|
| 508 |
+
guidance_scale=guidance_scale,
|
| 509 |
+
seed=seed,
|
| 510 |
+
)
|
| 511 |
+
return [vis_control_image] + results
|
| 512 |
+
|
| 513 |
+
@staticmethod
|
| 514 |
+
def preprocess_depth(
|
| 515 |
+
input_image: np.ndarray,
|
| 516 |
+
image_resolution: int,
|
| 517 |
+
detect_resolution: int,
|
| 518 |
+
is_depth_image: bool,
|
| 519 |
+
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
| 520 |
+
input_image = HWC3(input_image)
|
| 521 |
+
if not is_depth_image:
|
| 522 |
+
control_image, _ = apply_midas(
|
| 523 |
+
resize_image(input_image, detect_resolution))
|
| 524 |
+
control_image = HWC3(control_image)
|
| 525 |
+
image = resize_image(input_image, image_resolution)
|
| 526 |
+
H, W = image.shape[:2]
|
| 527 |
+
control_image = cv2.resize(control_image, (W, H),
|
| 528 |
+
interpolation=cv2.INTER_LINEAR)
|
| 529 |
+
else:
|
| 530 |
+
control_image = input_image
|
| 531 |
+
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
| 532 |
+
control_image)
|
| 533 |
|
| 534 |
+
@torch.inference_mode()
|
| 535 |
+
def process_depth(
|
| 536 |
+
self,
|
| 537 |
+
input_image: np.ndarray,
|
| 538 |
+
prompt: str,
|
| 539 |
+
additional_prompt: str,
|
| 540 |
+
negative_prompt: str,
|
| 541 |
+
num_images: int,
|
| 542 |
+
image_resolution: int,
|
| 543 |
+
detect_resolution: int,
|
| 544 |
+
num_steps: int,
|
| 545 |
+
guidance_scale: float,
|
| 546 |
+
seed: int,
|
| 547 |
+
is_depth_image: bool,
|
| 548 |
+
) -> list[PIL.Image.Image]:
|
| 549 |
+
control_image, vis_control_image = self.preprocess_depth(
|
| 550 |
+
input_image=input_image,
|
| 551 |
+
image_resolution=image_resolution,
|
| 552 |
+
detect_resolution=detect_resolution,
|
| 553 |
+
is_depth_image=is_depth_image,
|
| 554 |
+
)
|
| 555 |
+
self.load_controlnet_weight('depth')
|
| 556 |
+
results = self.run_pipe(
|
| 557 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
| 558 |
+
negative_prompt=negative_prompt,
|
| 559 |
+
control_image=control_image,
|
| 560 |
+
num_images=num_images,
|
| 561 |
+
num_steps=num_steps,
|
| 562 |
+
guidance_scale=guidance_scale,
|
| 563 |
+
seed=seed,
|
| 564 |
+
)
|
| 565 |
+
return [vis_control_image] + results
|
| 566 |
+
|
| 567 |
+
@staticmethod
|
| 568 |
+
def preprocess_normal(
|
| 569 |
+
input_image: np.ndarray,
|
| 570 |
+
image_resolution: int,
|
| 571 |
+
detect_resolution: int,
|
| 572 |
+
bg_threshold: float,
|
| 573 |
+
is_normal_image: bool,
|
| 574 |
+
) -> tuple[PIL.Image.Image, PIL.Image.Image]:
|
| 575 |
input_image = HWC3(input_image)
|
| 576 |
+
if not is_normal_image:
|
| 577 |
+
_, control_image = apply_midas(resize_image(
|
| 578 |
+
input_image, detect_resolution),
|
| 579 |
+
bg_th=bg_threshold)
|
| 580 |
+
control_image = HWC3(control_image)
|
| 581 |
+
image = resize_image(input_image, image_resolution)
|
| 582 |
+
H, W = image.shape[:2]
|
| 583 |
+
control_image = cv2.resize(control_image, (W, H),
|
| 584 |
+
interpolation=cv2.INTER_LINEAR)
|
| 585 |
+
else:
|
| 586 |
+
control_image = input_image
|
| 587 |
+
return PIL.Image.fromarray(control_image), PIL.Image.fromarray(
|
| 588 |
+
control_image)
|
| 589 |
+
|
| 590 |
+
@torch.inference_mode()
|
| 591 |
+
def process_normal(
|
| 592 |
+
self,
|
| 593 |
+
input_image: np.ndarray,
|
| 594 |
+
prompt: str,
|
| 595 |
+
additional_prompt: str,
|
| 596 |
+
negative_prompt: str,
|
| 597 |
+
num_images: int,
|
| 598 |
+
image_resolution: int,
|
| 599 |
+
detect_resolution: int,
|
| 600 |
+
num_steps: int,
|
| 601 |
+
guidance_scale: float,
|
| 602 |
+
seed: int,
|
| 603 |
+
bg_threshold: float,
|
| 604 |
+
is_normal_image: bool,
|
| 605 |
+
) -> list[PIL.Image.Image]:
|
| 606 |
+
control_image, vis_control_image = self.preprocess_normal(
|
| 607 |
+
input_image=input_image,
|
| 608 |
+
image_resolution=image_resolution,
|
| 609 |
+
detect_resolution=detect_resolution,
|
| 610 |
+
bg_threshold=bg_threshold,
|
| 611 |
+
is_normal_image=is_normal_image,
|
| 612 |
+
)
|
| 613 |
+
self.load_controlnet_weight('normal')
|
| 614 |
+
results = self.run_pipe(
|
| 615 |
+
prompt=self.get_prompt(prompt, additional_prompt),
|
| 616 |
+
negative_prompt=negative_prompt,
|
| 617 |
+
control_image=control_image,
|
| 618 |
+
num_images=num_images,
|
| 619 |
+
num_steps=num_steps,
|
| 620 |
+
guidance_scale=guidance_scale,
|
| 621 |
+
seed=seed,
|
| 622 |
+
)
|
| 623 |
+
return [vis_control_image] + results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -1,8 +1,9 @@
|
|
| 1 |
addict==2.4.0
|
| 2 |
albumentations==1.3.0
|
| 3 |
einops==0.6.0
|
| 4 |
-
|
| 5 |
-
huggingface
|
|
|
|
| 6 |
imageio==2.25.0
|
| 7 |
imageio-ffmpeg==0.4.8
|
| 8 |
kornia==0.6.9
|
|
|
|
| 1 |
addict==2.4.0
|
| 2 |
albumentations==1.3.0
|
| 3 |
einops==0.6.0
|
| 4 |
+
git+https://github.com/huggingface/accelerate@78151f8
|
| 5 |
+
git+https://github.com/huggingface/diffusers@fa6d52d
|
| 6 |
+
gradio==3.20.0
|
| 7 |
imageio==2.25.0
|
| 8 |
imageio-ffmpeg==0.4.8
|
| 9 |
kornia==0.6.9
|