hysts
Add files
572921a
raw
history blame
4.43 kB
#!/usr/bin/env python
import pathlib
import gradio as gr
import numpy as np
import PIL.Image
import torch
from sahi.prediction import ObjectPrediction
from sahi.utils.cv import visualize_object_predictions
from transformers import AutoImageProcessor, DetaForObjectDetection
from ultralytics import YOLO
DESCRIPTION = '# Compare DETA and YOLOv8'
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
MODEL_ID = 'jozhang97/deta-swin-large'
image_processor = AutoImageProcessor.from_pretrained(MODEL_ID)
model_deta = DetaForObjectDetection.from_pretrained(MODEL_ID)
model_deta.to(device)
model_yolo = YOLO('yolov8x.pt')
@torch.inference_mode()
def run_deta(image_path: str, threshold: float) -> np.ndarray:
image = PIL.Image.open(image_path)
inputs = image_processor(images=image, return_tensors='pt').to(device)
outputs = model_deta(**inputs)
target_sizes = torch.tensor([image.size[::-1]])
results = image_processor.post_process_object_detection(
outputs, threshold=threshold, target_sizes=target_sizes)[0]
boxes = results['boxes'].cpu().numpy()
scores = results['scores'].cpu().numpy()
cat_ids = results['labels'].cpu().numpy().tolist()
preds = []
for box, score, cat_id in zip(boxes, scores, cat_ids):
box = np.round(box).astype(int)
cat_label = model_deta.config.id2label[cat_id]
pred = ObjectPrediction(bbox=box,
category_id=cat_id,
category_name=cat_label,
score=score)
preds.append(pred)
res = visualize_object_predictions(np.asarray(image), preds)['image']
return res
def run_yolov8(image_path: str, threshold: float) -> np.ndarray:
image = PIL.Image.open(image_path)
results = model_yolo(image, imgsz=640, conf=threshold)
boxes = results[0].boxes.cpu().numpy().data
preds = []
for box in boxes:
score = box[4]
cat_id = int(box[5])
box = np.round(box[:4]).astype(int)
cat_label = model_yolo.model.names[cat_id]
pred = ObjectPrediction(bbox=box,
category_id=cat_id,
category_name=cat_label,
score=score)
preds.append(pred)
res = visualize_object_predictions(np.asarray(image), preds)['image']
return res
def run(image_path: str, threshold_deta: float,
threshold_yolo: float) -> tuple[np.ndarray, np.ndarray]:
return run_deta(image_path,
threshold_deta), run_yolov8(image_path, threshold_yolo)
with gr.Blocks(css='style.css') as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
image = gr.Image(label='Input image', type='filepath')
threshold_deta = gr.Slider(label='Score threshold for DETA',
minimum=0,
maximum=1,
value=0.1,
step=0.01)
threshold_yolo = gr.Slider(label='Score threshold for YOLOv8',
minimum=0,
maximum=1,
value=0.5,
step=0.01)
run_button = gr.Button('Run')
with gr.Column():
result_deta = gr.Image(label='Result (DETA)', type='numpy')
result_yolo = gr.Image(label='Result (YOLOv8)', type='numpy')
with gr.Row():
paths = sorted(pathlib.Path('images').glob('*.jpg'))
gr.Examples(examples=[[path.as_posix(), 0.1, 0.5] for path in paths],
inputs=[
image,
threshold_deta,
threshold_yolo,
],
outputs=[
result_deta,
result_yolo,
],
fn=run,
cache_examples=True)
run_button.click(fn=run,
inputs=[
image,
threshold_deta,
threshold_yolo,
],
outputs=[
result_deta,
result_yolo,
])
demo.queue().launch()