Spaces:
Running
on
Zero
Running
on
Zero
Use transformers
Browse files- .pre-commit-config.yaml +37 -0
- .style.yapf +5 -0
- README.md +2 -2
- app.py +249 -262
- requirements.txt +8 -0
- style.css +3 -0
- utils.py +0 -27
.pre-commit-config.yaml
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
exclude: patch
|
2 |
+
repos:
|
3 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
4 |
+
rev: v4.2.0
|
5 |
+
hooks:
|
6 |
+
- id: check-executables-have-shebangs
|
7 |
+
- id: check-json
|
8 |
+
- id: check-merge-conflict
|
9 |
+
- id: check-shebang-scripts-are-executable
|
10 |
+
- id: check-toml
|
11 |
+
- id: check-yaml
|
12 |
+
- id: double-quote-string-fixer
|
13 |
+
- id: end-of-file-fixer
|
14 |
+
- id: mixed-line-ending
|
15 |
+
args: ['--fix=lf']
|
16 |
+
- id: requirements-txt-fixer
|
17 |
+
- id: trailing-whitespace
|
18 |
+
- repo: https://github.com/myint/docformatter
|
19 |
+
rev: v1.4
|
20 |
+
hooks:
|
21 |
+
- id: docformatter
|
22 |
+
args: ['--in-place']
|
23 |
+
- repo: https://github.com/pycqa/isort
|
24 |
+
rev: 5.12.0
|
25 |
+
hooks:
|
26 |
+
- id: isort
|
27 |
+
- repo: https://github.com/pre-commit/mirrors-mypy
|
28 |
+
rev: v0.991
|
29 |
+
hooks:
|
30 |
+
- id: mypy
|
31 |
+
args: ['--ignore-missing-imports']
|
32 |
+
additional_dependencies: ['types-python-slugify']
|
33 |
+
- repo: https://github.com/google/yapf
|
34 |
+
rev: v0.32.0
|
35 |
+
hooks:
|
36 |
+
- id: yapf
|
37 |
+
args: ['--parallel', '--in-place']
|
.style.yapf
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[style]
|
2 |
+
based_on_style = pep8
|
3 |
+
blank_line_before_nested_class_or_def = false
|
4 |
+
spaces_before_comment = 2
|
5 |
+
split_before_logical_operator = true
|
README.md
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
---
|
2 |
-
title: BLIP2
|
3 |
emoji: 🌖
|
4 |
colorFrom: blue
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: bsd-3-clause
|
|
|
1 |
---
|
2 |
+
title: BLIP2 with transformers
|
3 |
emoji: 🌖
|
4 |
colorFrom: blue
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.18.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: bsd-3-clause
|
app.py
CHANGED
@@ -1,282 +1,269 @@
|
|
1 |
-
|
2 |
|
3 |
-
import
|
4 |
-
import gradio as gr
|
5 |
-
import requests
|
6 |
-
from utils import Endpoint, get_token
|
7 |
-
|
8 |
-
|
9 |
-
def encode_image(image):
|
10 |
-
buffered = BytesIO()
|
11 |
-
image.save(buffered, format="JPEG")
|
12 |
-
buffered.seek(0)
|
13 |
-
|
14 |
-
return buffered
|
15 |
-
|
16 |
-
|
17 |
-
def query_chat_api(
|
18 |
-
image, prompt, decoding_method, temperature, len_penalty, repetition_penalty
|
19 |
-
):
|
20 |
-
|
21 |
-
url = endpoint.url
|
22 |
-
url = url + "/api/generate"
|
23 |
-
|
24 |
-
headers = {
|
25 |
-
"User-Agent": "BLIP-2 HuggingFace Space",
|
26 |
-
"Auth-Token": get_token(),
|
27 |
-
}
|
28 |
-
|
29 |
-
data = {
|
30 |
-
"prompt": prompt,
|
31 |
-
"use_nucleus_sampling": decoding_method == "Nucleus sampling",
|
32 |
-
"temperature": temperature,
|
33 |
-
"length_penalty": len_penalty,
|
34 |
-
"repetition_penalty": repetition_penalty,
|
35 |
-
}
|
36 |
-
|
37 |
-
image = encode_image(image)
|
38 |
-
files = {"image": image}
|
39 |
-
|
40 |
-
response = requests.post(url, data=data, files=files, headers=headers)
|
41 |
|
42 |
-
|
43 |
-
return response.json()
|
44 |
-
else:
|
45 |
-
return "Error: " + response.text
|
46 |
-
|
47 |
-
|
48 |
-
def query_caption_api(
|
49 |
-
image, decoding_method, temperature, len_penalty, repetition_penalty
|
50 |
-
):
|
51 |
-
|
52 |
-
url = endpoint.url
|
53 |
-
url = url + "/api/caption"
|
54 |
-
|
55 |
-
headers = {
|
56 |
-
"User-Agent": "BLIP-2 HuggingFace Space",
|
57 |
-
"Auth-Token": get_token(),
|
58 |
-
}
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
}
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
return output
|
84 |
|
85 |
|
86 |
-
def
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
)
|
103 |
output = postprocess_output(output)
|
104 |
-
|
105 |
-
|
106 |
-
chat = [
|
107 |
-
(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2)
|
108 |
-
] # convert to tuples of list
|
109 |
-
|
110 |
-
return {chatbot: chat, state: history}
|
111 |
-
|
112 |
-
|
113 |
-
def inference_caption(
|
114 |
-
image,
|
115 |
-
decoding_method,
|
116 |
-
temperature,
|
117 |
-
length_penalty,
|
118 |
-
repetition_penalty,
|
119 |
-
):
|
120 |
-
output = query_caption_api(
|
121 |
-
image, decoding_method, temperature, length_penalty, repetition_penalty
|
122 |
-
)
|
123 |
-
|
124 |
-
return output[0]
|
125 |
|
|
|
|
|
|
|
126 |
|
127 |
-
title = """<h1 align="center">BLIP-2</h1>"""
|
128 |
-
description = """Gradio demo for BLIP-2, image-to-text generation from Salesforce Research. To use it, simply upload your image, or click one of the examples to load them.
|
129 |
-
<br> <strong>Disclaimer</strong>: This is a research prototype and is not intended for production use. No data including but not restricted to text and images is collected."""
|
130 |
-
article = """<strong>Paper</strong>: <a href='https://arxiv.org/abs/2301.12597' target='_blank'>BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models</a>
|
131 |
-
<br> <strong>Code</strong>: BLIP2 is now integrated into GitHub repo: <a href='https://github.com/salesforce/LAVIS' target='_blank'>LAVIS: a One-stop Library for Language and Vision</a>
|
132 |
-
<br> <strong>🤗 `transformers` integration</strong>: You can now use `transformers` to use our BLIP-2 models! Check out the <a href='https://huggingface.co/docs/transformers/main/en/model_doc/blip-2' target='_blank'> official docs </a>
|
133 |
-
<p> <strong>Project Page</strong>: <a href='https://github.com/salesforce/LAVIS/tree/main/projects/blip2' target='_blank'> BLIP2 on LAVIS</a>
|
134 |
-
<br> <strong>Description</strong>: Captioning results from <strong>BLIP2_OPT_6.7B</strong>. Chat results from <strong>BLIP2_FlanT5xxl</strong>.
|
135 |
-
"""
|
136 |
-
|
137 |
-
endpoint = Endpoint()
|
138 |
|
139 |
examples = [
|
140 |
-
[
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
]
|
146 |
|
147 |
-
with gr.Blocks(
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
)
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
with gr.Row():
|
160 |
-
with gr.Column(
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
value=
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
value=1.0,
|
184 |
-
step=0.2,
|
185 |
-
interactive=True,
|
186 |
-
label="Length Penalty (set to larger for longer sequence, used with beam search)",
|
187 |
-
)
|
188 |
-
|
189 |
-
rep_penalty = gr.Slider(
|
190 |
-
minimum=1.0,
|
191 |
-
maximum=5.0,
|
192 |
-
value=1.5,
|
193 |
-
step=0.5,
|
194 |
-
interactive=True,
|
195 |
-
label="Repeat Penalty (larger value prevents repetition)",
|
196 |
-
)
|
197 |
-
|
198 |
-
with gr.Column(scale=1.8):
|
199 |
-
|
200 |
-
with gr.Column():
|
201 |
-
caption_output = gr.Textbox(lines=1, label="Caption Output")
|
202 |
-
caption_button = gr.Button(
|
203 |
-
value="Caption it!", interactive=True, variant="primary"
|
204 |
-
)
|
205 |
-
caption_button.click(
|
206 |
-
inference_caption,
|
207 |
-
[
|
208 |
-
image_input,
|
209 |
-
sampling,
|
210 |
-
temperature,
|
211 |
-
len_penalty,
|
212 |
-
rep_penalty,
|
213 |
-
],
|
214 |
-
[caption_output],
|
215 |
-
)
|
216 |
-
|
217 |
-
gr.Markdown("""Trying prompting your input for chat; e.g. example prompt for QA, \"Question: {} Answer:\" Use proper punctuation (e.g., question mark).""")
|
218 |
-
with gr.Row():
|
219 |
-
with gr.Column(
|
220 |
-
scale=1.5,
|
221 |
-
):
|
222 |
-
chatbot = gr.Chatbot(
|
223 |
-
label="Chat Output (from FlanT5)",
|
224 |
-
)
|
225 |
-
|
226 |
-
# with gr.Row():
|
227 |
-
with gr.Column(scale=1):
|
228 |
-
chat_input = gr.Textbox(lines=1, label="Chat Input")
|
229 |
-
chat_input.submit(
|
230 |
-
inference_chat,
|
231 |
-
[
|
232 |
-
image_input,
|
233 |
-
chat_input,
|
234 |
-
sampling,
|
235 |
-
temperature,
|
236 |
-
len_penalty,
|
237 |
-
rep_penalty,
|
238 |
-
state,
|
239 |
-
],
|
240 |
-
[chatbot, state],
|
241 |
-
)
|
242 |
-
|
243 |
-
with gr.Row():
|
244 |
-
clear_button = gr.Button(value="Clear", interactive=True)
|
245 |
-
clear_button.click(
|
246 |
-
lambda: ("", [], []),
|
247 |
-
[],
|
248 |
-
[chat_input, chatbot, state],
|
249 |
-
queue=False,
|
250 |
-
)
|
251 |
-
|
252 |
-
submit_button = gr.Button(
|
253 |
-
value="Submit", interactive=True, variant="primary"
|
254 |
-
)
|
255 |
-
submit_button.click(
|
256 |
-
inference_chat,
|
257 |
-
[
|
258 |
-
image_input,
|
259 |
-
chat_input,
|
260 |
-
sampling,
|
261 |
-
temperature,
|
262 |
-
len_penalty,
|
263 |
-
rep_penalty,
|
264 |
-
state,
|
265 |
-
],
|
266 |
-
[chatbot, state],
|
267 |
-
)
|
268 |
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
|
276 |
-
|
277 |
-
|
278 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
)
|
280 |
|
281 |
-
|
282 |
-
iface.launch(enable_queue=True)
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
|
3 |
+
from __future__ import annotations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
import string
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
import gradio as gr
|
8 |
+
import PIL.Image
|
9 |
+
import torch
|
10 |
+
from transformers import AutoProcessor, Blip2ForConditionalGeneration
|
11 |
+
|
12 |
+
DESCRIPTION = '# BLIP-2'
|
13 |
+
|
14 |
+
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
15 |
+
|
16 |
+
MODEL_ID_OPT_6_7B = 'Salesforce/blip2-opt-6.7b'
|
17 |
+
MODEL_ID_FLAN_T5_XXL = 'Salesforce/blip2-flan-t5-xxl'
|
18 |
+
model_dict = {
|
19 |
+
MODEL_ID_OPT_6_7B: {
|
20 |
+
'processor':
|
21 |
+
AutoProcessor.from_pretrained(MODEL_ID_OPT_6_7B),
|
22 |
+
'model':
|
23 |
+
Blip2ForConditionalGeneration.from_pretrained(MODEL_ID_OPT_6_7B,
|
24 |
+
device_map='auto',
|
25 |
+
load_in_8bit=True),
|
26 |
+
},
|
27 |
+
MODEL_ID_FLAN_T5_XXL: {
|
28 |
+
'processor':
|
29 |
+
AutoProcessor.from_pretrained(MODEL_ID_FLAN_T5_XXL),
|
30 |
+
'model':
|
31 |
+
Blip2ForConditionalGeneration.from_pretrained(MODEL_ID_FLAN_T5_XXL,
|
32 |
+
device_map='auto',
|
33 |
+
load_in_8bit=True),
|
34 |
}
|
35 |
+
}
|
36 |
+
|
37 |
+
|
38 |
+
def generate_caption(model_id: str, image: PIL.Image.Image,
|
39 |
+
decoding_method: str, temperature: float,
|
40 |
+
length_penalty: float, repetition_penalty: float) -> str:
|
41 |
+
model_info = model_dict[model_id]
|
42 |
+
processor = model_info['processor']
|
43 |
+
model = model_info['model']
|
44 |
+
|
45 |
+
inputs = processor(images=image,
|
46 |
+
return_tensors='pt').to(device, torch.float16)
|
47 |
+
generated_ids = model.generate(
|
48 |
+
pixel_values=inputs.pixel_values,
|
49 |
+
do_sample=decoding_method == 'Nucleus sampling',
|
50 |
+
temperature=temperature,
|
51 |
+
length_penalty=length_penalty,
|
52 |
+
repetition_penalty=repetition_penalty,
|
53 |
+
max_length=50)
|
54 |
+
result = processor.batch_decode(generated_ids,
|
55 |
+
skip_special_tokens=True)[0].strip()
|
56 |
+
return result
|
57 |
+
|
58 |
+
|
59 |
+
def answer_question(model_id: str, image: PIL.Image.Image, text: str,
|
60 |
+
decoding_method: str, temperature: float,
|
61 |
+
length_penalty: float, repetition_penalty: float) -> str:
|
62 |
+
model_info = model_dict[model_id]
|
63 |
+
processor = model_info['processor']
|
64 |
+
model = model_info['model']
|
65 |
+
|
66 |
+
inputs = processor(images=image, text=text,
|
67 |
+
return_tensors='pt').to(device, torch.float16)
|
68 |
+
generated_ids = model.generate(**inputs,
|
69 |
+
do_sample=decoding_method ==
|
70 |
+
'Nucleus sampling',
|
71 |
+
temperature=temperature,
|
72 |
+
length_penalty=length_penalty,
|
73 |
+
repetition_penalty=repetition_penalty)
|
74 |
+
result = processor.batch_decode(generated_ids,
|
75 |
+
skip_special_tokens=True)[0].strip()
|
76 |
+
return result
|
77 |
+
|
78 |
+
|
79 |
+
def postprocess_output(output: str) -> str:
|
80 |
+
if output and not output[-1] in string.punctuation:
|
81 |
+
output += '.'
|
82 |
return output
|
83 |
|
84 |
|
85 |
+
def chat(
|
86 |
+
model_id: str,
|
87 |
+
image: PIL.Image.Image,
|
88 |
+
text: str,
|
89 |
+
decoding_method: str,
|
90 |
+
temperature: float,
|
91 |
+
length_penalty: float,
|
92 |
+
repetition_penalty: float,
|
93 |
+
history_orig: list[str] = [],
|
94 |
+
history_qa: list[str] = [],
|
95 |
+
) -> tuple[dict[str, list[str]], dict[str, list[str]], dict[str, list[str]]]:
|
96 |
+
history_orig.append(text)
|
97 |
+
text_qa = f'Question: {text} Answer:'
|
98 |
+
history_qa.append(text_qa)
|
99 |
+
prompt = ' '.join(history_qa)
|
100 |
+
|
101 |
+
output = answer_question(
|
102 |
+
model_id,
|
103 |
+
image,
|
104 |
+
prompt,
|
105 |
+
decoding_method,
|
106 |
+
temperature,
|
107 |
+
length_penalty,
|
108 |
+
repetition_penalty,
|
109 |
)
|
110 |
output = postprocess_output(output)
|
111 |
+
history_orig.append(output)
|
112 |
+
history_qa.append(output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
+
chat_val = list(zip(history_orig[0::2], history_orig[1::2]))
|
115 |
+
return gr.update(value=chat_val), gr.update(value=history_orig), gr.update(
|
116 |
+
value=history_qa)
|
117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
examples = [
|
120 |
+
[
|
121 |
+
'house.png',
|
122 |
+
'How could someone get out of the house?',
|
123 |
+
],
|
124 |
+
[
|
125 |
+
'flower.jpg',
|
126 |
+
'What is this flower and where is it\'s origin?',
|
127 |
+
],
|
128 |
+
[
|
129 |
+
'pizza.jpg',
|
130 |
+
'What are steps to cook it?',
|
131 |
+
],
|
132 |
+
[
|
133 |
+
'sunset.jpg',
|
134 |
+
'Here is a romantic message going along the photo:',
|
135 |
+
],
|
136 |
+
[
|
137 |
+
'forbidden_city.webp',
|
138 |
+
'In what dynasties was this place built?',
|
139 |
+
],
|
140 |
]
|
141 |
|
142 |
+
with gr.Blocks(css='style.css') as demo:
|
143 |
+
gr.Markdown(DESCRIPTION)
|
144 |
+
|
145 |
+
image = gr.Image(type='pil')
|
146 |
+
with gr.Accordion(label='Advanced settings', open=False):
|
147 |
+
with gr.Row():
|
148 |
+
model_id_caption = gr.Dropdown(
|
149 |
+
label='Model ID for image captioning',
|
150 |
+
choices=[MODEL_ID_OPT_6_7B, MODEL_ID_FLAN_T5_XXL],
|
151 |
+
value=MODEL_ID_OPT_6_7B)
|
152 |
+
model_id_chat = gr.Dropdown(
|
153 |
+
label='Model ID for VQA',
|
154 |
+
choices=[MODEL_ID_OPT_6_7B, MODEL_ID_FLAN_T5_XXL],
|
155 |
+
value=MODEL_ID_FLAN_T5_XXL)
|
156 |
+
sampling_method = gr.Radio(
|
157 |
+
label='Text Decoding Method',
|
158 |
+
choices=['Beam search', 'Nucleus sampling'],
|
159 |
+
value='Beam search',
|
160 |
+
)
|
161 |
+
temperature = gr.Slider(
|
162 |
+
label='Temperature (used with nucleus sampling)',
|
163 |
+
minimum=0.5,
|
164 |
+
maximum=1.0,
|
165 |
+
value=1.0,
|
166 |
+
step=0.1,
|
167 |
+
)
|
168 |
+
length_penalty = gr.Slider(
|
169 |
+
label=
|
170 |
+
'Length Penalty (set to larger for longer sequence, used with beam search)',
|
171 |
+
minimum=-1.0,
|
172 |
+
maximum=2.0,
|
173 |
+
value=1.0,
|
174 |
+
step=0.2,
|
175 |
+
)
|
176 |
+
rep_penalty = gr.Slider(
|
177 |
+
label='Repeat Penalty (larger value prevents repetition)',
|
178 |
+
minimum=1.0,
|
179 |
+
maximum=5.0,
|
180 |
+
value=1.5,
|
181 |
+
step=0.5,
|
182 |
+
)
|
183 |
with gr.Row():
|
184 |
+
with gr.Column():
|
185 |
+
with gr.Box():
|
186 |
+
gr.Markdown('Image Captioning')
|
187 |
+
caption_button = gr.Button(value='Caption it!')
|
188 |
+
caption_output = gr.Textbox(label='Caption Output')
|
189 |
+
with gr.Column():
|
190 |
+
with gr.Box():
|
191 |
+
gr.Markdown('VQA Chat')
|
192 |
+
vqa_input = gr.Text(label='Chat Input', max_lines=1)
|
193 |
+
with gr.Row():
|
194 |
+
clear_chat_button = gr.Button(value='Clear')
|
195 |
+
chat_button = gr.Button(value='Submit')
|
196 |
+
chatbot = gr.Chatbot(label='Chat Output')
|
197 |
+
history_orig = gr.State(value=[])
|
198 |
+
history_qa = gr.State(value=[])
|
199 |
+
|
200 |
+
gr.Examples(
|
201 |
+
examples=examples,
|
202 |
+
inputs=[
|
203 |
+
image,
|
204 |
+
vqa_input,
|
205 |
+
],
|
206 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
|
208 |
+
caption_button.click(
|
209 |
+
fn=generate_caption,
|
210 |
+
inputs=[
|
211 |
+
model_id_caption,
|
212 |
+
image,
|
213 |
+
sampling_method,
|
214 |
+
temperature,
|
215 |
+
length_penalty,
|
216 |
+
rep_penalty,
|
217 |
+
],
|
218 |
+
outputs=caption_output,
|
219 |
+
)
|
220 |
|
221 |
+
chat_inputs = [
|
222 |
+
model_id_chat,
|
223 |
+
image,
|
224 |
+
vqa_input,
|
225 |
+
sampling_method,
|
226 |
+
temperature,
|
227 |
+
length_penalty,
|
228 |
+
rep_penalty,
|
229 |
+
history_orig,
|
230 |
+
]
|
231 |
+
chat_outputs = [
|
232 |
+
chatbot,
|
233 |
+
history_orig,
|
234 |
+
history_qa,
|
235 |
+
]
|
236 |
+
vqa_input.submit(
|
237 |
+
fn=chat,
|
238 |
+
inputs=chat_inputs,
|
239 |
+
outputs=chat_outputs,
|
240 |
+
)
|
241 |
+
chat_button.click(
|
242 |
+
fn=chat,
|
243 |
+
inputs=chat_inputs,
|
244 |
+
outputs=chat_outputs,
|
245 |
+
)
|
246 |
+
clear_chat_button.click(
|
247 |
+
fn=lambda: ('', [], [], []),
|
248 |
+
inputs=None,
|
249 |
+
outputs=[
|
250 |
+
vqa_input,
|
251 |
+
chatbot,
|
252 |
+
history_orig,
|
253 |
+
history_qa,
|
254 |
+
],
|
255 |
+
queue=False,
|
256 |
+
)
|
257 |
+
image.change(
|
258 |
+
fn=lambda: ('', '', [], []),
|
259 |
+
inputs=None,
|
260 |
+
outputs=[
|
261 |
+
chatbot,
|
262 |
+
caption_output,
|
263 |
+
history_orig,
|
264 |
+
history_qa,
|
265 |
+
],
|
266 |
+
queue=False,
|
267 |
)
|
268 |
|
269 |
+
demo.queue(max_size=10).launch()
|
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==0.16.0
|
2 |
+
bitsandbytes==0.37.0
|
3 |
+
git+https://github.com/huggingface/transformers@c836f77
|
4 |
+
gradio==3.18.0
|
5 |
+
huggingface-hub==0.12.0
|
6 |
+
Pillow==9.4.0
|
7 |
+
torch==1.13.1
|
8 |
+
torchvision==0.14.1
|
style.css
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
h1 {
|
2 |
+
text-align: center;
|
3 |
+
}
|
utils.py
DELETED
@@ -1,27 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
|
4 |
-
class Endpoint:
|
5 |
-
def __init__(self):
|
6 |
-
self._url = None
|
7 |
-
|
8 |
-
@property
|
9 |
-
def url(self):
|
10 |
-
if self._url is None:
|
11 |
-
self._url = self.get_url()
|
12 |
-
|
13 |
-
return self._url
|
14 |
-
|
15 |
-
def get_url(self):
|
16 |
-
endpoint = os.environ.get("endpoint")
|
17 |
-
|
18 |
-
return endpoint
|
19 |
-
|
20 |
-
|
21 |
-
def get_token():
|
22 |
-
token = os.environ.get("auth_token")
|
23 |
-
|
24 |
-
if token is None:
|
25 |
-
raise ValueError("auth-token not found in environment variables")
|
26 |
-
|
27 |
-
return token
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|