| from typing import * | |
| import torch | |
| import torch.nn as nn | |
| from ..basic import SparseTensor | |
| from ..linear import SparseLinear | |
| from ..nonlinearity import SparseGELU | |
| from ..attention import SparseMultiHeadAttention, SerializeMode | |
| from ...norm import LayerNorm32 | |
| class SparseFeedForwardNet(nn.Module): | |
| def __init__(self, channels: int, mlp_ratio: float = 4.0): | |
| super().__init__() | |
| self.mlp = nn.Sequential( | |
| SparseLinear(channels, int(channels * mlp_ratio)), | |
| SparseGELU(approximate="tanh"), | |
| SparseLinear(int(channels * mlp_ratio), channels), | |
| ) | |
| def forward(self, x: SparseTensor) -> SparseTensor: | |
| return self.mlp(x) | |
| class SparseTransformerBlock(nn.Module): | |
| """ | |
| Sparse Transformer block (MSA + FFN). | |
| """ | |
| def __init__( | |
| self, | |
| channels: int, | |
| num_heads: int, | |
| mlp_ratio: float = 4.0, | |
| attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full", | |
| window_size: Optional[int] = None, | |
| shift_sequence: Optional[int] = None, | |
| shift_window: Optional[Tuple[int, int, int]] = None, | |
| serialize_mode: Optional[SerializeMode] = None, | |
| use_checkpoint: bool = False, | |
| use_rope: bool = False, | |
| qk_rms_norm: bool = False, | |
| qkv_bias: bool = True, | |
| ln_affine: bool = False, | |
| ): | |
| super().__init__() | |
| self.use_checkpoint = use_checkpoint | |
| self.norm1 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6) | |
| self.norm2 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6) | |
| self.attn = SparseMultiHeadAttention( | |
| channels, | |
| num_heads=num_heads, | |
| attn_mode=attn_mode, | |
| window_size=window_size, | |
| shift_sequence=shift_sequence, | |
| shift_window=shift_window, | |
| serialize_mode=serialize_mode, | |
| qkv_bias=qkv_bias, | |
| use_rope=use_rope, | |
| qk_rms_norm=qk_rms_norm, | |
| ) | |
| self.mlp = SparseFeedForwardNet( | |
| channels, | |
| mlp_ratio=mlp_ratio, | |
| ) | |
| def _forward(self, x: SparseTensor) -> SparseTensor: | |
| h = x.replace(self.norm1(x.feats)) | |
| h = self.attn(h) | |
| x = x + h | |
| h = x.replace(self.norm2(x.feats)) | |
| h = self.mlp(h) | |
| x = x + h | |
| return x | |
| def forward(self, x: SparseTensor) -> SparseTensor: | |
| if self.use_checkpoint: | |
| return torch.utils.checkpoint.checkpoint(self._forward, x, use_reentrant=False) | |
| else: | |
| return self._forward(x) | |
| class SparseTransformerCrossBlock(nn.Module): | |
| """ | |
| Sparse Transformer cross-attention block (MSA + MCA + FFN). | |
| """ | |
| def __init__( | |
| self, | |
| channels: int, | |
| ctx_channels: int, | |
| num_heads: int, | |
| mlp_ratio: float = 4.0, | |
| attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full", | |
| window_size: Optional[int] = None, | |
| shift_sequence: Optional[int] = None, | |
| shift_window: Optional[Tuple[int, int, int]] = None, | |
| serialize_mode: Optional[SerializeMode] = None, | |
| use_checkpoint: bool = False, | |
| use_rope: bool = False, | |
| qk_rms_norm: bool = False, | |
| qk_rms_norm_cross: bool = False, | |
| qkv_bias: bool = True, | |
| ln_affine: bool = False, | |
| ): | |
| super().__init__() | |
| self.use_checkpoint = use_checkpoint | |
| self.norm1 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6) | |
| self.norm2 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6) | |
| self.norm3 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6) | |
| self.self_attn = SparseMultiHeadAttention( | |
| channels, | |
| num_heads=num_heads, | |
| type="self", | |
| attn_mode=attn_mode, | |
| window_size=window_size, | |
| shift_sequence=shift_sequence, | |
| shift_window=shift_window, | |
| serialize_mode=serialize_mode, | |
| qkv_bias=qkv_bias, | |
| use_rope=use_rope, | |
| qk_rms_norm=qk_rms_norm, | |
| ) | |
| self.cross_attn = SparseMultiHeadAttention( | |
| channels, | |
| ctx_channels=ctx_channels, | |
| num_heads=num_heads, | |
| type="cross", | |
| attn_mode="full", | |
| qkv_bias=qkv_bias, | |
| qk_rms_norm=qk_rms_norm_cross, | |
| ) | |
| self.mlp = SparseFeedForwardNet( | |
| channels, | |
| mlp_ratio=mlp_ratio, | |
| ) | |
| def _forward(self, x: SparseTensor, mod: torch.Tensor, context: torch.Tensor): | |
| h = x.replace(self.norm1(x.feats)) | |
| h = self.self_attn(h) | |
| x = x + h | |
| h = x.replace(self.norm2(x.feats)) | |
| h = self.cross_attn(h, context) | |
| x = x + h | |
| h = x.replace(self.norm3(x.feats)) | |
| h = self.mlp(h) | |
| x = x + h | |
| return x | |
| def forward(self, x: SparseTensor, context: torch.Tensor): | |
| if self.use_checkpoint: | |
| return torch.utils.checkpoint.checkpoint(self._forward, x, context, use_reentrant=False) | |
| else: | |
| return self._forward(x, context) | |