Spaces:
Running
Running
gabrielaltay
commited on
Commit
•
729aada
1
Parent(s):
da0f003
new layout
Browse files
app.py
CHANGED
@@ -120,10 +120,12 @@ def render_outreach_links():
|
|
120 |
nomic_url = f"{nomic_base_url}/{nomic_map_name}/map"
|
121 |
hf_url = "https://huggingface.co/hyperdemocracy"
|
122 |
pc_url = "https://www.pinecone.io/blog/serverless"
|
|
|
123 |
st.subheader(":brain: About [hyperdemocracy](https://hyperdemocracy.us)")
|
124 |
st.subheader(f":world_map: Visualize [nomic atlas]({nomic_url})")
|
125 |
st.subheader(f":hugging_face: Raw [huggingface datasets]({hf_url})")
|
126 |
st.subheader(f":evergreen_tree: Index [pinecone serverless]({pc_url})")
|
|
|
127 |
|
128 |
|
129 |
def group_docs(docs) -> list[tuple[str, list[Document]]]:
|
@@ -247,7 +249,7 @@ When you send a query to LegisQA, it will attempt to retrieve relevant content f
|
|
247 |
This is a research project. The RAG technique helps to ground the LLM response by providing context from a trusted source, but it does not guarantee a high quality response. We encourage you to play around, find questions that work and find questions that fail. There is a small monthly budget dedicated to the OpenAI endpoints. Once that is used up each month, queries will no longer work.
|
248 |
|
249 |
|
250 |
-
##
|
251 |
|
252 |
Use the `Generative Config` to change LLM parameters.
|
253 |
Use the `Retrieval Config` to change the number of chunks retrieved from our congress corpus and to apply various filters to the content before it is retrieved (e.g. filter to a specific set of congresses). Use the `Prompt Config` to try out different document formatting and prompting strategies.
|
@@ -443,17 +445,6 @@ def render_sidebar():
|
|
443 |
|
444 |
def render_query_rag_tab():
|
445 |
|
446 |
-
key_prefix = "query_rag"
|
447 |
-
render_example_queries()
|
448 |
-
|
449 |
-
col1, col2 = st.columns(2)
|
450 |
-
with col1:
|
451 |
-
with st.expander("Generative Config"):
|
452 |
-
render_generative_config(key_prefix)
|
453 |
-
with col2:
|
454 |
-
with st.expander("Retrieval Config"):
|
455 |
-
render_retrieval_config(key_prefix)
|
456 |
-
|
457 |
QUERY_RAG_TEMPLATE = """You are an expert legislative analyst. Use the following excerpts from US congressional legislation to respond to the user's query. The excerpts are formatted as a JSON list. Each JSON object has "legis_id", "title", "introduced_date", "sponsor", and "snippets" keys. If a snippet is useful in writing part of your response, then cite the "legis_id", "title", "introduced_date", and "sponsor" in the response. If you don't know how to respond, just tell the user.
|
458 |
|
459 |
---
|
@@ -472,11 +463,22 @@ Query: {query}"""
|
|
472 |
]
|
473 |
)
|
474 |
|
|
|
|
|
|
|
475 |
with st.form(f"{key_prefix}|query_form"):
|
476 |
st.text_area(
|
477 |
"Enter a query that can be answered with congressional legislation:",
|
478 |
key=f"{key_prefix}|query",
|
479 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
480 |
query_submitted = st.form_submit_button("Submit")
|
481 |
|
482 |
if query_submitted:
|
@@ -567,23 +569,23 @@ Query: {query}"""
|
|
567 |
)
|
568 |
query_submitted = st.form_submit_button("Submit")
|
569 |
|
570 |
-
|
571 |
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
|
588 |
grp1b, grp2b = st.columns(2)
|
589 |
sbs_cols = {"grp1": grp1b, "grp2": grp2b}
|
@@ -663,9 +665,9 @@ vectorstore = load_pinecone_vectorstore()
|
|
663 |
|
664 |
query_rag_tab, query_rag_sbs_tab, guide_tab = st.tabs(
|
665 |
[
|
666 |
-
"
|
667 |
-
"
|
668 |
-
"
|
669 |
]
|
670 |
)
|
671 |
|
|
|
120 |
nomic_url = f"{nomic_base_url}/{nomic_map_name}/map"
|
121 |
hf_url = "https://huggingface.co/hyperdemocracy"
|
122 |
pc_url = "https://www.pinecone.io/blog/serverless"
|
123 |
+
together_url = "https://www.together.ai/"
|
124 |
st.subheader(":brain: About [hyperdemocracy](https://hyperdemocracy.us)")
|
125 |
st.subheader(f":world_map: Visualize [nomic atlas]({nomic_url})")
|
126 |
st.subheader(f":hugging_face: Raw [huggingface datasets]({hf_url})")
|
127 |
st.subheader(f":evergreen_tree: Index [pinecone serverless]({pc_url})")
|
128 |
+
st.subheader(f":pancakes: Inference [together.ai]({together_url})")
|
129 |
|
130 |
|
131 |
def group_docs(docs) -> list[tuple[str, list[Document]]]:
|
|
|
249 |
This is a research project. The RAG technique helps to ground the LLM response by providing context from a trusted source, but it does not guarantee a high quality response. We encourage you to play around, find questions that work and find questions that fail. There is a small monthly budget dedicated to the OpenAI endpoints. Once that is used up each month, queries will no longer work.
|
250 |
|
251 |
|
252 |
+
## Config
|
253 |
|
254 |
Use the `Generative Config` to change LLM parameters.
|
255 |
Use the `Retrieval Config` to change the number of chunks retrieved from our congress corpus and to apply various filters to the content before it is retrieved (e.g. filter to a specific set of congresses). Use the `Prompt Config` to try out different document formatting and prompting strategies.
|
|
|
445 |
|
446 |
def render_query_rag_tab():
|
447 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
448 |
QUERY_RAG_TEMPLATE = """You are an expert legislative analyst. Use the following excerpts from US congressional legislation to respond to the user's query. The excerpts are formatted as a JSON list. Each JSON object has "legis_id", "title", "introduced_date", "sponsor", and "snippets" keys. If a snippet is useful in writing part of your response, then cite the "legis_id", "title", "introduced_date", and "sponsor" in the response. If you don't know how to respond, just tell the user.
|
449 |
|
450 |
---
|
|
|
463 |
]
|
464 |
)
|
465 |
|
466 |
+
key_prefix = "query_rag"
|
467 |
+
render_example_queries()
|
468 |
+
|
469 |
with st.form(f"{key_prefix}|query_form"):
|
470 |
st.text_area(
|
471 |
"Enter a query that can be answered with congressional legislation:",
|
472 |
key=f"{key_prefix}|query",
|
473 |
)
|
474 |
+
col1, col2 = st.columns(2)
|
475 |
+
with col1:
|
476 |
+
with st.expander("Generative Config"):
|
477 |
+
render_generative_config(key_prefix)
|
478 |
+
with col2:
|
479 |
+
with st.expander("Retrieval Config"):
|
480 |
+
render_retrieval_config(key_prefix)
|
481 |
+
|
482 |
query_submitted = st.form_submit_button("Submit")
|
483 |
|
484 |
if query_submitted:
|
|
|
569 |
)
|
570 |
query_submitted = st.form_submit_button("Submit")
|
571 |
|
572 |
+
grp1a, grp2a = st.columns(2)
|
573 |
|
574 |
+
with grp1a:
|
575 |
+
st.header("Group 1")
|
576 |
+
key_prefix = f"{base_key_prefix}|grp1"
|
577 |
+
with st.expander("Generative Config"):
|
578 |
+
render_generative_config(key_prefix)
|
579 |
+
with st.expander("Retrieval Config"):
|
580 |
+
render_retrieval_config(key_prefix)
|
581 |
|
582 |
+
with grp2a:
|
583 |
+
st.header("Group 2")
|
584 |
+
key_prefix = f"{base_key_prefix}|grp2"
|
585 |
+
with st.expander("Generative Config"):
|
586 |
+
render_generative_config(key_prefix)
|
587 |
+
with st.expander("Retrieval Config"):
|
588 |
+
render_retrieval_config(key_prefix)
|
589 |
|
590 |
grp1b, grp2b = st.columns(2)
|
591 |
sbs_cols = {"grp1": grp1b, "grp2": grp2b}
|
|
|
665 |
|
666 |
query_rag_tab, query_rag_sbs_tab, guide_tab = st.tabs(
|
667 |
[
|
668 |
+
"RAG",
|
669 |
+
"RAG (side-by-side)",
|
670 |
+
"Guide",
|
671 |
]
|
672 |
)
|
673 |
|