gabrielaltay commited on
Commit
385ebea
·
1 Parent(s): 7333f5e
Files changed (2) hide show
  1. .gitignore +2 -1
  2. app.py +34 -4
.gitignore CHANGED
@@ -1 +1,2 @@
1
- .streamlit
 
 
1
+ .streamlit
2
+ test.py
app.py CHANGED
@@ -1,5 +1,6 @@
1
  from collections import defaultdict
2
  import json
 
3
  import re
4
 
5
  from langchain_core.documents import Document
@@ -17,8 +18,12 @@ import streamlit as st
17
 
18
 
19
  st.set_page_config(layout="wide", page_title="LegisQA")
20
- SS = st.session_state
21
 
 
 
 
 
 
22
  SEED = 292764
23
  CONGRESS_NUMBERS = [113, 114, 115, 116, 117, 118]
24
  SPONSOR_PARTIES = ["D", "R", "L", "I"]
@@ -95,13 +100,12 @@ def load_bge_embeddings():
95
 
96
  def load_pinecone_vectorstore():
97
  emb_fn = load_bge_embeddings()
98
- pc = Pinecone(api_key=st.secrets["pinecone_api_key"])
99
- index = pc.Index(st.secrets["pinecone_index_name"])
100
  vectorstore = PineconeVectorStore(
101
- index=index,
102
  embedding=emb_fn,
103
  text_key="text",
104
  distance_strategy=DistanceStrategy.COSINE,
 
 
105
  )
106
  return vectorstore
107
 
@@ -417,16 +421,42 @@ with query_tab:
417
  search_kwargs={"k": SS["n_ret_docs"], "filter": vs_filter},
418
  )
419
  prompt = PromptTemplate.from_template(SS["prompt_template"])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
420
  rag_chain_from_docs = (
421
  RunnablePassthrough.assign(context=(lambda x: format_docs(x["context"])))
422
  | prompt
423
  | llm
424
  | StrOutputParser()
425
  )
 
 
 
 
426
  rag_chain_with_source = RunnableParallel(
427
  {"context": retriever, "question": RunnablePassthrough()}
428
  ).assign(answer=rag_chain_from_docs)
429
 
 
 
 
 
430
  with get_openai_callback() as cb:
431
  SS["out"] = rag_chain_with_source.invoke(SS["query"])
432
  SS["cb"] = cb
 
1
  from collections import defaultdict
2
  import json
3
+ import os
4
  import re
5
 
6
  from langchain_core.documents import Document
 
18
 
19
 
20
  st.set_page_config(layout="wide", page_title="LegisQA")
 
21
 
22
+ os.environ["LANGCHAIN_API_KEY"] = st.secrets["langchain_api_key"]
23
+ os.environ["LANGCHAIN_TRACING_V2"] = "true"
24
+ os.environ["LANGCHAIN_PROJECT"] = st.secrets["langchain_project"]
25
+
26
+ SS = st.session_state
27
  SEED = 292764
28
  CONGRESS_NUMBERS = [113, 114, 115, 116, 117, 118]
29
  SPONSOR_PARTIES = ["D", "R", "L", "I"]
 
100
 
101
  def load_pinecone_vectorstore():
102
  emb_fn = load_bge_embeddings()
 
 
103
  vectorstore = PineconeVectorStore(
 
104
  embedding=emb_fn,
105
  text_key="text",
106
  distance_strategy=DistanceStrategy.COSINE,
107
+ pinecone_api_key=st.secrets["pinecone_api_key"],
108
+ index_name=st.secrets["pinecone_index_name"],
109
  )
110
  return vectorstore
111
 
 
421
  search_kwargs={"k": SS["n_ret_docs"], "filter": vs_filter},
422
  )
423
  prompt = PromptTemplate.from_template(SS["prompt_template"])
424
+
425
+ # # takes in a dict. adds context key with formatted docs
426
+ # rag_chain_from_docs = (
427
+ # RunnablePassthrough.assign(context=(lambda x: format_docs(x["context"])))
428
+ # | prompt
429
+ # | llm
430
+ # | StrOutputParser()
431
+ # )
432
+
433
+ # # takes in a query string.
434
+ # # passes to retriever and passthru
435
+ # # assign answer
436
+ # rag_chain_with_source = RunnableParallel(
437
+ # {"context": retriever, "question": RunnablePassthrough()}
438
+ # ).assign(answer=rag_chain_from_docs)
439
+
440
+
441
+ # takes in a dict. adds context key with formatted docs
442
  rag_chain_from_docs = (
443
  RunnablePassthrough.assign(context=(lambda x: format_docs(x["context"])))
444
  | prompt
445
  | llm
446
  | StrOutputParser()
447
  )
448
+
449
+ # takes in a query string.
450
+ # passes to retriever and passthru
451
+ # assign answer
452
  rag_chain_with_source = RunnableParallel(
453
  {"context": retriever, "question": RunnablePassthrough()}
454
  ).assign(answer=rag_chain_from_docs)
455
 
456
+
457
+
458
+ print(rag_chain_with_source)
459
+
460
  with get_openai_callback() as cb:
461
  SS["out"] = rag_chain_with_source.invoke(SS["query"])
462
  SS["cb"] = cb