DesignEdit-v0 / sam /efficient_sam /efficient_sam.py
jiayueru
update code
37ee4a4
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import math
from typing import Any, List, Tuple, Type
import torch
import torch.nn.functional as F
from torch import nn, Tensor
from .efficient_sam_decoder import MaskDecoder, PromptEncoder
from .efficient_sam_encoder import ImageEncoderViT
from .two_way_transformer import TwoWayAttentionBlock, TwoWayTransformer
class EfficientSam(nn.Module):
mask_threshold: float = 0.0
image_format: str = "RGB"
def __init__(
self,
image_encoder: ImageEncoderViT,
prompt_encoder: PromptEncoder,
decoder_max_num_input_points: int,
mask_decoder: MaskDecoder,
pixel_mean: List[float] = [0.485, 0.456, 0.406],
pixel_std: List[float] = [0.229, 0.224, 0.225],
) -> None:
"""
SAM predicts object masks from an image and input prompts.
Arguments:
image_encoder (ImageEncoderViT): The backbone used to encode the
image into image embeddings that allow for efficient mask prediction.
prompt_encoder (PromptEncoder): Encodes various types of input prompts.
mask_decoder (MaskDecoder): Predicts masks from the image embeddings
and encoded prompts.
pixel_mean (list(float)): Mean values for normalizing pixels in the input image.
pixel_std (list(float)): Std values for normalizing pixels in the input image.
"""
super().__init__()
self.image_encoder = image_encoder
self.prompt_encoder = prompt_encoder
self.decoder_max_num_input_points = decoder_max_num_input_points
self.mask_decoder = mask_decoder
self.register_buffer(
"pixel_mean", torch.Tensor(pixel_mean).view(1, 3, 1, 1), False
)
self.register_buffer(
"pixel_std", torch.Tensor(pixel_std).view(1, 3, 1, 1), False
)
@torch.jit.export
def predict_masks(
self,
image_embeddings: torch.Tensor,
batched_points: torch.Tensor,
batched_point_labels: torch.Tensor,
multimask_output: bool,
input_h: int,
input_w: int,
output_h: int = -1,
output_w: int = -1,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Predicts masks given image embeddings and prompts. This only runs the decoder.
Arguments:
image_embeddings: A tensor of shape [B, C, H, W] or [B*max_num_queries, C, H, W]
batched_points: A tensor of shape [B, max_num_queries, num_pts, 2]
batched_point_labels: A tensor of shape [B, max_num_queries, num_pts]
Returns:
A tuple of two tensors:
low_res_mask: A tensor of shape [B, max_num_queries, 256, 256] of predicted masks
iou_predictions: A tensor of shape [B, max_num_queries] of estimated IOU scores
"""
batch_size, max_num_queries, num_pts, _ = batched_points.shape
num_pts = batched_points.shape[2]
rescaled_batched_points = self.get_rescaled_pts(batched_points, input_h, input_w)
if num_pts > self.decoder_max_num_input_points:
rescaled_batched_points = rescaled_batched_points[
:, :, : self.decoder_max_num_input_points, :
]
batched_point_labels = batched_point_labels[
:, :, : self.decoder_max_num_input_points
]
elif num_pts < self.decoder_max_num_input_points:
rescaled_batched_points = F.pad(
rescaled_batched_points,
(0, 0, 0, self.decoder_max_num_input_points - num_pts),
value=-1.0,
)
batched_point_labels = F.pad(
batched_point_labels,
(0, self.decoder_max_num_input_points - num_pts),
value=-1.0,
)
sparse_embeddings = self.prompt_encoder(
rescaled_batched_points.reshape(
batch_size * max_num_queries, self.decoder_max_num_input_points, 2
),
batched_point_labels.reshape(
batch_size * max_num_queries, self.decoder_max_num_input_points
),
)
sparse_embeddings = sparse_embeddings.view(
batch_size,
max_num_queries,
sparse_embeddings.shape[1],
sparse_embeddings.shape[2],
)
low_res_masks, iou_predictions = self.mask_decoder(
image_embeddings,
self.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
multimask_output=multimask_output,
)
_, num_predictions, low_res_size, _ = low_res_masks.shape
if output_w > 0 and output_h > 0:
output_masks = F.interpolate(
low_res_masks, (output_h, output_w), mode="bicubic"
)
output_masks = torch.reshape(
output_masks,
(batch_size, max_num_queries, num_predictions, output_h, output_w),
)
else:
output_masks = torch.reshape(
low_res_masks,
(
batch_size,
max_num_queries,
num_predictions,
low_res_size,
low_res_size,
),
)
iou_predictions = torch.reshape(
iou_predictions, (batch_size, max_num_queries, num_predictions)
)
sorted_ids = torch.argsort(iou_predictions, dim=-1, descending=True)
iou_predictions = torch.take_along_dim(iou_predictions, sorted_ids, dim=2)
output_masks = torch.take_along_dim(
output_masks, sorted_ids[..., None, None], dim=2
)
return output_masks, iou_predictions
def get_rescaled_pts(self, batched_points: torch.Tensor, input_h: int, input_w: int):
return torch.stack(
[
torch.where(
batched_points[..., 0] >= 0,
batched_points[..., 0] * self.image_encoder.img_size / input_w,
-1.0,
),
torch.where(
batched_points[..., 1] >= 0,
batched_points[..., 1] * self.image_encoder.img_size / input_h,
-1.0,
),
],
dim=-1,
)
@torch.jit.export
def get_image_embeddings(self, batched_images) -> torch.Tensor:
"""
Predicts masks end-to-end from provided images and prompts.
If prompts are not known in advance, using SamPredictor is
recommended over calling the model directly.
Arguments:
batched_images: A tensor of shape [B, 3, H, W]
Returns:
List of image embeddings each of of shape [B, C(i), H(i), W(i)].
The last embedding corresponds to the final layer.
"""
batched_images = self.preprocess(batched_images)
return self.image_encoder(batched_images)
def forward(
self,
batched_images: torch.Tensor,
batched_points: torch.Tensor,
batched_point_labels: torch.Tensor,
scale_to_original_image_size: bool = True,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Predicts masks end-to-end from provided images and prompts.
If prompts are not known in advance, using SamPredictor is
recommended over calling the model directly.
Arguments:
batched_images: A tensor of shape [B, 3, H, W]
batched_points: A tensor of shape [B, num_queries, max_num_pts, 2]
batched_point_labels: A tensor of shape [B, num_queries, max_num_pts]
Returns:
A list tuples of two tensors where the ith element is by considering the first i+1 points.
low_res_mask: A tensor of shape [B, 256, 256] of predicted masks
iou_predictions: A tensor of shape [B, max_num_queries] of estimated IOU scores
"""
batch_size, _, input_h, input_w = batched_images.shape
image_embeddings = self.get_image_embeddings(batched_images)
return self.predict_masks(
image_embeddings,
batched_points,
batched_point_labels,
multimask_output=True,
input_h=input_h,
input_w=input_w,
output_h=input_h if scale_to_original_image_size else -1,
output_w=input_w if scale_to_original_image_size else -1,
)
def preprocess(self, x: torch.Tensor) -> torch.Tensor:
"""Normalize pixel values and pad to a square input."""
if (
x.shape[2] != self.image_encoder.img_size
or x.shape[3] != self.image_encoder.img_size
):
x = F.interpolate(
x,
(self.image_encoder.img_size, self.image_encoder.img_size),
mode="bilinear",
)
return (x - self.pixel_mean) / self.pixel_std
def build_efficient_sam(encoder_patch_embed_dim, encoder_num_heads, checkpoint=None):
img_size = 1024
encoder_patch_size = 16
encoder_depth = 12
encoder_mlp_ratio = 4.0
encoder_neck_dims = [256, 256]
decoder_max_num_input_points = 6
decoder_transformer_depth = 2
decoder_transformer_mlp_dim = 2048
decoder_num_heads = 8
decoder_upscaling_layer_dims = [64, 32]
num_multimask_outputs = 3
iou_head_depth = 3
iou_head_hidden_dim = 256
activation = "gelu"
normalization_type = "layer_norm"
normalize_before_activation = False
assert activation == "relu" or activation == "gelu"
if activation == "relu":
activation_fn = nn.ReLU
else:
activation_fn = nn.GELU
image_encoder = ImageEncoderViT(
img_size=img_size,
patch_size=encoder_patch_size,
in_chans=3,
patch_embed_dim=encoder_patch_embed_dim,
normalization_type=normalization_type,
depth=encoder_depth,
num_heads=encoder_num_heads,
mlp_ratio=encoder_mlp_ratio,
neck_dims=encoder_neck_dims,
act_layer=activation_fn,
)
image_embedding_size = image_encoder.image_embedding_size
encoder_transformer_output_dim = image_encoder.transformer_output_dim
sam = EfficientSam(
image_encoder=image_encoder,
prompt_encoder=PromptEncoder(
embed_dim=encoder_transformer_output_dim,
image_embedding_size=(image_embedding_size, image_embedding_size),
input_image_size=(img_size, img_size),
),
decoder_max_num_input_points=decoder_max_num_input_points,
mask_decoder=MaskDecoder(
transformer_dim=encoder_transformer_output_dim,
transformer=TwoWayTransformer(
depth=decoder_transformer_depth,
embedding_dim=encoder_transformer_output_dim,
num_heads=decoder_num_heads,
mlp_dim=decoder_transformer_mlp_dim,
activation=activation_fn,
normalize_before_activation=normalize_before_activation,
),
num_multimask_outputs=num_multimask_outputs,
activation=activation_fn,
normalization_type=normalization_type,
normalize_before_activation=normalize_before_activation,
iou_head_depth=iou_head_depth - 1,
iou_head_hidden_dim=iou_head_hidden_dim,
upscaling_layer_dims=decoder_upscaling_layer_dims,
),
pixel_mean=[0.485, 0.456, 0.406],
pixel_std=[0.229, 0.224, 0.225],
)
if checkpoint is not None:
with open(checkpoint, "rb") as f:
state_dict = torch.load(f, map_location="cpu")
sam.load_state_dict(state_dict["model"])
return sam