Hynek Kydlíček
commited on
Commit
·
c923467
1
Parent(s):
28a3b2a
first
Browse files- app.py +295 -0
- leaderboard/klokan.csv +6 -0
- leaderboard/table.csv +6 -0
- leaderboard/tsp.csv +6 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A gradio app that renders a static leaderboard. This is used for Hugging Face Space."""
|
2 |
+
|
3 |
+
import ast
|
4 |
+
import argparse
|
5 |
+
import glob
|
6 |
+
import pickle
|
7 |
+
|
8 |
+
import gradio as gr
|
9 |
+
import numpy as np
|
10 |
+
import pandas as pd
|
11 |
+
import plotly.graph_objects as go
|
12 |
+
import pandas as pd
|
13 |
+
|
14 |
+
|
15 |
+
def make_default_md():
|
16 |
+
|
17 |
+
leaderboard_md = f"""
|
18 |
+
# 🏆 CZ-EVAL Leaderboard
|
19 |
+
[Developer](https://me.hynky.name/) | [Twitter](https://twitter.com/HKydlicek)
|
20 |
+
|
21 |
+
CZ-EVAL is a evaluation leadboard of Tasks in Czech for LLMs.
|
22 |
+
|
23 |
+
It's evaluated on following datasets:
|
24 |
+
|
25 |
+
- Math Problems Understanding [Klokan-QA](https://huggingface.co/datasets/hynky/klokan-qa)
|
26 |
+
- Reasoning and General Knowledge [TSP-QA](https://huggingface.co/datasets/hynky/tsp-qa)
|
27 |
+
|
28 |
+
💻 Code: The evaluation code can be found at [hynky1999/LLM-Eval](https://github.com/hynky1999/LLM-Eval). Model inference is done using [Open-Router](https://openrouter.ai/) or on cloud using [Modal Labs](https://modal.com/).
|
29 |
+
"""
|
30 |
+
return leaderboard_md
|
31 |
+
|
32 |
+
|
33 |
+
def make_arena_leaderboard_md(arena_df):
|
34 |
+
total_models = len(arena_df)
|
35 |
+
|
36 |
+
leaderboard_md = f"""
|
37 |
+
Total #models: **{total_models}**. Last updated: Feb 15, 2024.
|
38 |
+
"""
|
39 |
+
return leaderboard_md
|
40 |
+
|
41 |
+
|
42 |
+
def make_full_leaderboard_md(elo_results):
|
43 |
+
leaderboard_md = f"""
|
44 |
+
Three benchmarks are displayed: **Arena Elo**, **MT-Bench** and **MMLU**.
|
45 |
+
- [Klokan-QA](https://huggingface.co/datasets/hynky/klokan-qa) - Mathematical competitions dataset
|
46 |
+
- [TSP](https://huggingface.co/datasets/hynky/TSP) - Comprehensive dataset of
|
47 |
+
|
48 |
+
"""
|
49 |
+
return leaderboard_md
|
50 |
+
|
51 |
+
|
52 |
+
# Combine all category accuracies into a single DataFrame
|
53 |
+
|
54 |
+
|
55 |
+
def plot_spider(df, title):
|
56 |
+
categories = df.columns.tolist()[1:]
|
57 |
+
categories = [
|
58 |
+
*categories,
|
59 |
+
categories[0],
|
60 |
+
] # Ensure the graph is circular by appending the start to the end
|
61 |
+
colors = [
|
62 |
+
"#1f77b4", # muted blue
|
63 |
+
"#ff7f0e", # safety orange
|
64 |
+
"#2ca02c", # cooked asparagus green
|
65 |
+
"#d62728", # brick red
|
66 |
+
"#9467bd", # muted purple
|
67 |
+
"#8c564b", # chestnut brown
|
68 |
+
"#e377c2", # raspberry yogurt pink
|
69 |
+
"#7f7f7f", # middle gray
|
70 |
+
"#bcbd22", # curry yellow-green
|
71 |
+
"#17becf", # blue-teal
|
72 |
+
]
|
73 |
+
|
74 |
+
# Setting for 1000x1000
|
75 |
+
fig_1000 = go.Figure()
|
76 |
+
|
77 |
+
for i, (idx, row) in enumerate(df.iterrows()):
|
78 |
+
name = row[0]
|
79 |
+
row = row.tolist()[1:]
|
80 |
+
row = row + [
|
81 |
+
row[0]
|
82 |
+
] # Ensure the graph is circular by appending the start to the end
|
83 |
+
color = colors[i]
|
84 |
+
fig_1000.add_trace(
|
85 |
+
go.Scatterpolar(
|
86 |
+
r=row,
|
87 |
+
theta=categories,
|
88 |
+
opacity=0.4,
|
89 |
+
name=name,
|
90 |
+
line=dict(
|
91 |
+
color=color, width=4
|
92 |
+
), # Adjust line width for better visibility
|
93 |
+
)
|
94 |
+
)
|
95 |
+
|
96 |
+
fig_1000.update_layout(
|
97 |
+
width=600,
|
98 |
+
height=628,
|
99 |
+
polar=dict(
|
100 |
+
angularaxis=dict(
|
101 |
+
gridwidth=2, # Increase line width for better visibility
|
102 |
+
rotation=90,
|
103 |
+
direction="clockwise",
|
104 |
+
),
|
105 |
+
radialaxis=dict(
|
106 |
+
visible=True,
|
107 |
+
range=[0, 100],
|
108 |
+
angle=45,
|
109 |
+
tickangle=45,
|
110 |
+
tickvals=[0, 25, 50, 75, 100],
|
111 |
+
ticktext=["0%", "25%", "50%", "75%", "100%"],
|
112 |
+
),
|
113 |
+
),
|
114 |
+
title_text=title,
|
115 |
+
title_x=0.5,
|
116 |
+
title_y=0.97,
|
117 |
+
title_xanchor="center",
|
118 |
+
title_yanchor="top",
|
119 |
+
title_font_size=24,
|
120 |
+
title_font_color="#333333",
|
121 |
+
font=dict(family="Arial", size=16, color="#333333"),
|
122 |
+
legend=dict(
|
123 |
+
orientation="h", yanchor="bottom", y=-0.45, xanchor="center", x=0.5
|
124 |
+
),
|
125 |
+
)
|
126 |
+
return fig_1000
|
127 |
+
|
128 |
+
|
129 |
+
def openrouter_hyperlink(model_name):
|
130 |
+
return f'<a target="_blank" href="https://openrouter.ai/models/{model_name}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
131 |
+
|
132 |
+
|
133 |
+
def get_full_table(model_table_df):
|
134 |
+
num_cols = ["klokan", "culture", "analytical", "critical", "verbal"]
|
135 |
+
# Multiply by 100 and round to 2 decimals
|
136 |
+
# Add average
|
137 |
+
model_table_df["average"] = model_table_df[num_cols].mean(axis=1)
|
138 |
+
model_table_df[num_cols + ["average"]] = model_table_df[
|
139 |
+
num_cols + ["average"]
|
140 |
+
].apply(lambda x: round(x * 100, 2))
|
141 |
+
|
142 |
+
# Sort and add rank
|
143 |
+
model_table_df.sort_values(by="average", ascending=False, inplace=True)
|
144 |
+
model_table_df.insert(0, "rank", np.arange(1, len(model_table_df) + 1))
|
145 |
+
|
146 |
+
# Add link
|
147 |
+
model_table_df["model_name"] = model_table_df["model_name"].apply(
|
148 |
+
lambda x: openrouter_hyperlink(x)
|
149 |
+
)
|
150 |
+
|
151 |
+
model_table_df.rename(
|
152 |
+
columns={
|
153 |
+
"model_name": "🤖 Model",
|
154 |
+
"klokan": "🧮 Klokan-QA",
|
155 |
+
"culture": "🌍 TSP-Culture",
|
156 |
+
"analytical": "🔍 TSP-Analytical",
|
157 |
+
"critical": "💡 TSP-Critical",
|
158 |
+
"verbal": "📖 TSP-Verbal",
|
159 |
+
"average": "📊 Average",
|
160 |
+
},
|
161 |
+
inplace=True,
|
162 |
+
)
|
163 |
+
|
164 |
+
return model_table_df
|
165 |
+
|
166 |
+
|
167 |
+
def build_leaderboard_tab(leaderboard_table_file, klokan_table_file, tsp_table_file):
|
168 |
+
|
169 |
+
results = pd.read_csv(leaderboard_table_file)
|
170 |
+
results = get_full_table(results)
|
171 |
+
# p1, p2 = get_grafs(pd.read_json(klokan_table_file), pd.read_json(tsp_table_file))
|
172 |
+
default_md = make_default_md()
|
173 |
+
|
174 |
+
md_1 = gr.Markdown(default_md, elem_id="leaderboard_markdown")
|
175 |
+
with gr.Tabs() as tabs:
|
176 |
+
# arena table
|
177 |
+
with gr.Tab("CZ-EVAL Leaderboard", id=0):
|
178 |
+
md = make_arena_leaderboard_md(results)
|
179 |
+
gr.Markdown(md, elem_id="leaderboard_markdown")
|
180 |
+
gr.Dataframe(
|
181 |
+
datatype=[
|
182 |
+
"str",
|
183 |
+
"markdown",
|
184 |
+
"number",
|
185 |
+
"number",
|
186 |
+
"number",
|
187 |
+
"number",
|
188 |
+
"number",
|
189 |
+
"number",
|
190 |
+
"str",
|
191 |
+
"str",
|
192 |
+
"str",
|
193 |
+
],
|
194 |
+
value=results,
|
195 |
+
elem_id="arena_leaderboard_dataframe",
|
196 |
+
height=700,
|
197 |
+
column_widths=[
|
198 |
+
50,
|
199 |
+
200,
|
200 |
+
120,
|
201 |
+
100,
|
202 |
+
100,
|
203 |
+
150,
|
204 |
+
150,
|
205 |
+
100,
|
206 |
+
150,
|
207 |
+
150,
|
208 |
+
150,
|
209 |
+
],
|
210 |
+
wrap=True,
|
211 |
+
)
|
212 |
+
|
213 |
+
p1 = plot_spider(pd.read_csv(klokan_table_file), "Klokan-QA - Acurracy")
|
214 |
+
p2 = plot_spider(pd.read_csv(tsp_table_file), "TSP - Accuracy")
|
215 |
+
|
216 |
+
gr.Markdown(
|
217 |
+
f"""## More Statistics for CZ-EVAL\n
|
218 |
+
Below are figures for more statistics.
|
219 |
+
""",
|
220 |
+
elem_id="leaderboard_markdown",
|
221 |
+
)
|
222 |
+
with gr.Row():
|
223 |
+
with gr.Column():
|
224 |
+
gr.Markdown(
|
225 |
+
"#### Figure 1: Performance of models on Klokan-QA per difficulty"
|
226 |
+
)
|
227 |
+
plot_1 = gr.Plot(p1, show_label=False)
|
228 |
+
with gr.Column():
|
229 |
+
gr.Markdown("#### Figure 2: Performance of models on TSP dataset")
|
230 |
+
plot_2 = gr.Plot(p2, show_label=False)
|
231 |
+
|
232 |
+
return [md_1, plot_1, plot_2]
|
233 |
+
|
234 |
+
|
235 |
+
block_css = """
|
236 |
+
#notice_markdown {
|
237 |
+
font-size: 104%
|
238 |
+
}
|
239 |
+
#notice_markdown th {
|
240 |
+
display: none;
|
241 |
+
}
|
242 |
+
#notice_markdown td {
|
243 |
+
padding-top: 6px;
|
244 |
+
padding-bottom: 6px;
|
245 |
+
}
|
246 |
+
#leaderboard_markdown {
|
247 |
+
font-size: 104%
|
248 |
+
}
|
249 |
+
#leaderboard_markdown td {
|
250 |
+
padding-top: 6px;
|
251 |
+
padding-bottom: 6px;
|
252 |
+
}
|
253 |
+
#leaderboard_dataframe td {
|
254 |
+
line-height: 0.1em;
|
255 |
+
}
|
256 |
+
footer {
|
257 |
+
display:none !important
|
258 |
+
}
|
259 |
+
.image-container {
|
260 |
+
display: flex;
|
261 |
+
align-items: center;
|
262 |
+
padding: 1px;
|
263 |
+
}
|
264 |
+
.image-container img {
|
265 |
+
margin: 0 30px;
|
266 |
+
height: 20px;
|
267 |
+
max-height: 100%;
|
268 |
+
width: auto;
|
269 |
+
max-width: 20%;
|
270 |
+
}
|
271 |
+
"""
|
272 |
+
|
273 |
+
|
274 |
+
def build_demo(leadboard_table, klokan_table, tsp_table):
|
275 |
+
text_size = gr.themes.sizes.text_lg
|
276 |
+
|
277 |
+
with gr.Blocks(
|
278 |
+
title="CZ-EVAL Leaderboard",
|
279 |
+
theme=gr.themes.Base(text_size=text_size),
|
280 |
+
css=block_css,
|
281 |
+
) as demo:
|
282 |
+
leader_components = build_leaderboard_tab(
|
283 |
+
leadboard_table, klokan_table, tsp_table
|
284 |
+
)
|
285 |
+
return demo
|
286 |
+
|
287 |
+
|
288 |
+
demo = build_demo(
|
289 |
+
leadboard_table="./leaderboard/table.csv",
|
290 |
+
klokan_table="./leaderboard/klokan.csv",
|
291 |
+
tsp_table="./leaderboard/tsp.csv",
|
292 |
+
)
|
293 |
+
|
294 |
+
if __name__ == "__main__":
|
295 |
+
demo.launch()
|
leaderboard/klokan.csv
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,Elementary 2-3,Elementary 4-5,Elementary 6-7,Elementary 8-9,High School 1-2,High School 3-4
|
2 |
+
anthropic/claude-2.1,43.96551724137931,50.35971223021583,39.87730061349693,39.75155279503105,33.33333333333333,14.772727272727273
|
3 |
+
google/gemini-pro,25.0,28.05755395683453,22.699386503067483,20.496894409937887,24.691358024691358,19.318181818181817
|
4 |
+
mistralai/mixtral-8x7b-instruct,34.48275862068966,25.899280575539567,25.766871165644172,25.465838509316768,20.98765432098765,19.318181818181817
|
5 |
+
openai/gpt-3.5-turbo,37.06896551724138,41.007194244604314,33.74233128834356,29.81366459627329,26.543209876543212,17.045454545454543
|
6 |
+
openai/gpt-4-1106-preview,66.37931034482759,62.589928057553955,50.306748466257666,40.993788819875775,32.71604938271605,36.36363636363637
|
leaderboard/table.csv
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model_name,analytical,critical,culture,verbal,klokan
|
2 |
+
anthropic/claude-2.1,0.3804034582132565,0.6449912126537786,0.7981770833333334,0.6336336336336337,0.3823884197828709
|
3 |
+
google/gemini-pro,0.2680115273775216,0.5992970123022847,0.7825520833333334,0.5765765765765766,0.23522316043425814
|
4 |
+
mistralai/mixtral-8x7b-instruct,0.24495677233429394,0.4833040421792619,0.6432291666666666,0.36936936936936937,0.25331724969843183
|
5 |
+
openai/gpt-3.5-turbo,0.27761767531219983,0.46572934973637964,0.6822916666666666,0.4084084084084084,0.3148371531966224
|
6 |
+
openai/gpt-4-1106-preview,0.4793467819404419,0.7662565905096661,0.9166666666666666,0.7207207207207207,0.47889022919179736
|
leaderboard/tsp.csv
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,Analytical,Critical,Cultural,Verbal
|
2 |
+
anthropic/claude-2.1,38.04034582132565,64.49912126537785,79.81770833333334,63.36336336336337
|
3 |
+
google/gemini-pro,26.801152737752158,59.929701230228474,78.25520833333334,57.65765765765766
|
4 |
+
mistralai/mixtral-8x7b-instruct,24.495677233429394,48.33040421792619,64.32291666666666,36.93693693693694
|
5 |
+
openai/gpt-3.5-turbo,27.761767531219984,46.57293497363796,68.22916666666666,40.84084084084084
|
6 |
+
openai/gpt-4-1106-preview,47.93467819404419,76.6256590509666,91.66666666666666,72.07207207207207
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.19.1
|
2 |
+
pandas==2.2.0
|
3 |
+
plotly==5.19.0
|