Spaces:
Build error
Build error
import torch | |
import torch.nn as nn | |
import math | |
__all__ = ['U2NET_full', 'U2NET_lite'] | |
def _upsample_like(x, size): | |
return nn.Upsample(size=size, mode='bilinear', align_corners=False)(x) | |
def _size_map(x, height): | |
# {height: size} for Upsample | |
size = list(x.shape[-2:]) | |
sizes = {} | |
for h in range(1, height): | |
sizes[h] = size | |
size = [math.ceil(w / 2) for w in size] | |
return sizes | |
class REBNCONV(nn.Module): | |
def __init__(self, in_ch=3, out_ch=3, dilate=1): | |
super(REBNCONV, self).__init__() | |
self.conv_s1 = nn.Conv2d(in_ch, out_ch, 3, padding=1 * dilate, dilation=1 * dilate) | |
self.bn_s1 = nn.BatchNorm2d(out_ch) | |
self.relu_s1 = nn.ReLU(inplace=True) | |
def forward(self, x): | |
return self.relu_s1(self.bn_s1(self.conv_s1(x))) | |
class RSU(nn.Module): | |
def __init__(self, name, height, in_ch, mid_ch, out_ch, dilated=False): | |
super(RSU, self).__init__() | |
self.name = name | |
self.height = height | |
self.dilated = dilated | |
self._make_layers(height, in_ch, mid_ch, out_ch, dilated) | |
def forward(self, x): | |
sizes = _size_map(x, self.height) | |
x = self.rebnconvin(x) | |
# U-Net like symmetric encoder-decoder structure | |
def unet(x, height=1): | |
if height < self.height: | |
x1 = getattr(self, f'rebnconv{height}')(x) | |
if not self.dilated and height < self.height - 1: | |
x2 = unet(getattr(self, 'downsample')(x1), height + 1) | |
else: | |
x2 = unet(x1, height + 1) | |
x = getattr(self, f'rebnconv{height}d')(torch.cat((x2, x1), 1)) | |
return _upsample_like(x, sizes[height - 1]) if not self.dilated and height > 1 else x | |
else: | |
return getattr(self, f'rebnconv{height}')(x) | |
return x + unet(x) | |
def _make_layers(self, height, in_ch, mid_ch, out_ch, dilated=False): | |
self.add_module('rebnconvin', REBNCONV(in_ch, out_ch)) | |
self.add_module('downsample', nn.MaxPool2d(2, stride=2, ceil_mode=True)) | |
self.add_module(f'rebnconv1', REBNCONV(out_ch, mid_ch)) | |
self.add_module(f'rebnconv1d', REBNCONV(mid_ch * 2, out_ch)) | |
for i in range(2, height): | |
dilate = 1 if not dilated else 2 ** (i - 1) | |
self.add_module(f'rebnconv{i}', REBNCONV(mid_ch, mid_ch, dilate=dilate)) | |
self.add_module(f'rebnconv{i}d', REBNCONV(mid_ch * 2, mid_ch, dilate=dilate)) | |
dilate = 2 if not dilated else 2 ** (height - 1) | |
self.add_module(f'rebnconv{height}', REBNCONV(mid_ch, mid_ch, dilate=dilate)) | |
class U2NET(nn.Module): | |
def __init__(self, cfgs, out_ch): | |
super(U2NET, self).__init__() | |
self.out_ch = out_ch | |
self._make_layers(cfgs) | |
def forward(self, x): | |
sizes = _size_map(x, self.height) | |
maps = [] # storage for maps | |
# side saliency map | |
def unet(x, height=1): | |
if height < 6: | |
x1 = getattr(self, f'stage{height}')(x) | |
x2 = unet(getattr(self, 'downsample')(x1), height + 1) | |
x = getattr(self, f'stage{height}d')(torch.cat((x2, x1), 1)) | |
side(x, height) | |
return _upsample_like(x, sizes[height - 1]) if height > 1 else x | |
else: | |
x = getattr(self, f'stage{height}')(x) | |
side(x, height) | |
return _upsample_like(x, sizes[height - 1]) | |
def side(x, h): | |
# side output saliency map (before sigmoid) | |
x = getattr(self, f'side{h}')(x) | |
x = _upsample_like(x, sizes[1]) | |
maps.append(x) | |
def fuse(): | |
# fuse saliency probability maps | |
maps.reverse() | |
x = torch.cat(maps, 1) | |
x = getattr(self, 'outconv')(x) | |
maps.insert(0, x) | |
return [torch.sigmoid(x) for x in maps] | |
unet(x) | |
maps = fuse() | |
return maps | |
def _make_layers(self, cfgs): | |
self.height = int((len(cfgs) + 1) / 2) | |
self.add_module('downsample', nn.MaxPool2d(2, stride=2, ceil_mode=True)) | |
for k, v in cfgs.items(): | |
# build rsu block | |
self.add_module(k, RSU(v[0], *v[1])) | |
if v[2] > 0: | |
# build side layer | |
self.add_module(f'side{v[0][-1]}', nn.Conv2d(v[2], self.out_ch, 3, padding=1)) | |
# build fuse layer | |
self.add_module('outconv', nn.Conv2d(int(self.height * self.out_ch), self.out_ch, 1)) | |
def U2NET_full(): | |
full = { | |
# cfgs for building RSUs and sides | |
# {stage : [name, (height(L), in_ch, mid_ch, out_ch, dilated), side]} | |
'stage1': ['En_1', (7, 3, 32, 64), -1], | |
'stage2': ['En_2', (6, 64, 32, 128), -1], | |
'stage3': ['En_3', (5, 128, 64, 256), -1], | |
'stage4': ['En_4', (4, 256, 128, 512), -1], | |
'stage5': ['En_5', (4, 512, 256, 512, True), -1], | |
'stage6': ['En_6', (4, 512, 256, 512, True), 512], | |
'stage5d': ['De_5', (4, 1024, 256, 512, True), 512], | |
'stage4d': ['De_4', (4, 1024, 128, 256), 256], | |
'stage3d': ['De_3', (5, 512, 64, 128), 128], | |
'stage2d': ['De_2', (6, 256, 32, 64), 64], | |
'stage1d': ['De_1', (7, 128, 16, 64), 64], | |
} | |
return U2NET(cfgs=full, out_ch=1) | |
def U2NET_lite(): | |
lite = { | |
# cfgs for building RSUs and sides | |
# {stage : [name, (height(L), in_ch, mid_ch, out_ch, dilated), side]} | |
'stage1': ['En_1', (7, 3, 16, 64), -1], | |
'stage2': ['En_2', (6, 64, 16, 64), -1], | |
'stage3': ['En_3', (5, 64, 16, 64), -1], | |
'stage4': ['En_4', (4, 64, 16, 64), -1], | |
'stage5': ['En_5', (4, 64, 16, 64, True), -1], | |
'stage6': ['En_6', (4, 64, 16, 64, True), 64], | |
'stage5d': ['De_5', (4, 128, 16, 64, True), 64], | |
'stage4d': ['De_4', (4, 128, 16, 64), 64], | |
'stage3d': ['De_3', (5, 128, 16, 64), 64], | |
'stage2d': ['De_2', (6, 128, 16, 64), 64], | |
'stage1d': ['De_1', (7, 128, 16, 64), 64], | |
} | |
return U2NET(cfgs=lite, out_ch=1) | |