Spaces:
Runtime error
Runtime error
import os | |
import cv2 | |
import torch | |
import numpy as np | |
from models import ResnetGenerator | |
import argparse | |
from utils import Preprocess | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--photo_path', type=str, help='input photo path') | |
parser.add_argument('--save_path', type=str, help='cartoon save path') | |
args = parser.parse_args() | |
os.makedirs(os.path.dirname(args.save_path), exist_ok=True) | |
class Photo2Cartoon: | |
def __init__(self): | |
self.pre = Preprocess() | |
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
self.net = ResnetGenerator(ngf=32, img_size=256, light=True).to(self.device) | |
assert os.path.exists('./models/photo2cartoon_weights.pt'), "[Step1: load weights] Can not find 'photo2cartoon_weights.pt' in folder 'models!!!'" | |
params = torch.load('./models/photo2cartoon_weights.pt', map_location=self.device) | |
self.net.load_state_dict(params['genA2B']) | |
print('[Step1: load weights] success!') | |
def inference(self, img): | |
# face alignment and segmentation | |
face_rgba = self.pre.process(img) | |
if face_rgba is None: | |
print('[Step2: face detect] can not detect face!!!') | |
return None | |
print('[Step2: face detect] success!') | |
face_rgba = cv2.resize(face_rgba, (256, 256), interpolation=cv2.INTER_AREA) | |
face = face_rgba[:, :, :3].copy() | |
mask = face_rgba[:, :, 3][:, :, np.newaxis].copy() / 255. | |
face = (face*mask + (1-mask)*255) / 127.5 - 1 | |
face = np.transpose(face[np.newaxis, :, :, :], (0, 3, 1, 2)).astype(np.float32) | |
face = torch.from_numpy(face).to(self.device) | |
# inference | |
with torch.no_grad(): | |
cartoon = self.net(face)[0][0] | |
# post-process | |
cartoon = np.transpose(cartoon.cpu().numpy(), (1, 2, 0)) | |
cartoon = (cartoon + 1) * 127.5 | |
cartoon = (cartoon * mask + 255 * (1 - mask)).astype(np.uint8) | |
cartoon = cv2.cvtColor(cartoon, cv2.COLOR_RGB2BGR) | |
print('[Step3: photo to cartoon] success!') | |
return cartoon | |
if __name__ == '__main__': | |
img = cv2.cvtColor(cv2.imread(args.photo_path), cv2.COLOR_BGR2RGB) | |
c2p = Photo2Cartoon() | |
cartoon = c2p.inference(img) | |
if cartoon is not None: | |
cv2.imwrite(args.save_path, cartoon) | |
print('Cartoon portrait has been saved successfully!') | |