Spaces:
Runtime error
Runtime error
Harrison Chase
commited on
Commit
·
cee6e7a
1
Parent(s):
3c87692
cr
Browse files
chain.py
CHANGED
|
@@ -17,53 +17,14 @@ from langchain.prompts.example_selector import \
|
|
| 17 |
from langchain.vectorstores import FAISS, Weaviate
|
| 18 |
from pydantic import BaseModel
|
| 19 |
|
| 20 |
-
|
| 21 |
-
client = weaviate.Client(
|
| 22 |
-
url=WEAVIATE_URL,
|
| 23 |
-
additional_headers={"X-OpenAI-Api-Key": os.environ["OPENAI_API_KEY"]},
|
| 24 |
-
)
|
| 25 |
-
|
| 26 |
-
_eg_template = """## Example:
|
| 27 |
-
|
| 28 |
-
Chat History:
|
| 29 |
-
{chat_history}
|
| 30 |
-
Follow Up Input: {question}
|
| 31 |
-
Standalone question: {answer}"""
|
| 32 |
-
_eg_prompt = PromptTemplate(
|
| 33 |
-
template=_eg_template,
|
| 34 |
-
input_variables=["chat_history", "question", "answer"],
|
| 35 |
-
)
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
_prefix = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question. You should assume that the question is related to LangChain."""
|
| 39 |
-
_suffix = """## Example:
|
| 40 |
-
|
| 41 |
-
Chat History:
|
| 42 |
-
{chat_history}
|
| 43 |
-
Follow Up Input: {question}
|
| 44 |
-
Standalone question:"""
|
| 45 |
-
eg_store = Weaviate(
|
| 46 |
-
client,
|
| 47 |
-
"Rephrase",
|
| 48 |
-
"content",
|
| 49 |
-
attributes=["question", "answer", "chat_history"],
|
| 50 |
-
)
|
| 51 |
-
example_selector = SemanticSimilarityExampleSelector(vectorstore=eg_store, k=4)
|
| 52 |
-
prompt = FewShotPromptTemplate(
|
| 53 |
-
prefix=_prefix,
|
| 54 |
-
suffix=_suffix,
|
| 55 |
-
example_selector=example_selector,
|
| 56 |
-
example_prompt=_eg_prompt,
|
| 57 |
-
input_variables=["question", "chat_history"],
|
| 58 |
-
)
|
| 59 |
-
llm = OpenAI(temperature=0, model_name="text-davinci-003")
|
| 60 |
-
key_word_extractor = LLMChain(llm=llm, prompt=prompt)
|
| 61 |
|
| 62 |
|
| 63 |
class CustomChain(Chain, BaseModel):
|
| 64 |
|
| 65 |
vstore: Weaviate
|
| 66 |
chain: BaseCombineDocumentsChain
|
|
|
|
| 67 |
|
| 68 |
@property
|
| 69 |
def input_keys(self) -> List[str]:
|
|
@@ -77,7 +38,7 @@ class CustomChain(Chain, BaseModel):
|
|
| 77 |
question = inputs["question"]
|
| 78 |
chat_history_str = _get_chat_history(inputs["chat_history"])
|
| 79 |
if chat_history_str:
|
| 80 |
-
new_question = key_word_extractor.run(
|
| 81 |
question=question, chat_history=chat_history_str
|
| 82 |
)
|
| 83 |
else:
|
|
@@ -92,6 +53,46 @@ class CustomChain(Chain, BaseModel):
|
|
| 92 |
|
| 93 |
|
| 94 |
def get_new_chain1(vectorstore) -> Chain:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
EXAMPLE_PROMPT = PromptTemplate(
|
| 97 |
template=">Example:\nContent:\n---------\n{page_content}\n----------\nSource: {source}",
|
|
@@ -115,7 +116,7 @@ Answer in Markdown:"""
|
|
| 115 |
prompt=PROMPT,
|
| 116 |
document_prompt=EXAMPLE_PROMPT,
|
| 117 |
)
|
| 118 |
-
return CustomChain(chain=doc_chain, vstore=vectorstore)
|
| 119 |
|
| 120 |
|
| 121 |
def _get_chat_history(chat_history: List[Tuple[str, str]]):
|
|
|
|
| 17 |
from langchain.vectorstores import FAISS, Weaviate
|
| 18 |
from pydantic import BaseModel
|
| 19 |
|
| 20 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
|
| 23 |
class CustomChain(Chain, BaseModel):
|
| 24 |
|
| 25 |
vstore: Weaviate
|
| 26 |
chain: BaseCombineDocumentsChain
|
| 27 |
+
key_word_extractor: Chain
|
| 28 |
|
| 29 |
@property
|
| 30 |
def input_keys(self) -> List[str]:
|
|
|
|
| 38 |
question = inputs["question"]
|
| 39 |
chat_history_str = _get_chat_history(inputs["chat_history"])
|
| 40 |
if chat_history_str:
|
| 41 |
+
new_question = self.key_word_extractor.run(
|
| 42 |
question=question, chat_history=chat_history_str
|
| 43 |
)
|
| 44 |
else:
|
|
|
|
| 53 |
|
| 54 |
|
| 55 |
def get_new_chain1(vectorstore) -> Chain:
|
| 56 |
+
WEAVIATE_URL = os.environ["WEAVIATE_URL"]
|
| 57 |
+
client = weaviate.Client(
|
| 58 |
+
url=WEAVIATE_URL,
|
| 59 |
+
additional_headers={"X-OpenAI-Api-Key": os.environ["OPENAI_API_KEY"]},
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
_eg_template = """## Example:
|
| 63 |
+
|
| 64 |
+
Chat History:
|
| 65 |
+
{chat_history}
|
| 66 |
+
Follow Up Input: {question}
|
| 67 |
+
Standalone question: {answer}"""
|
| 68 |
+
_eg_prompt = PromptTemplate(
|
| 69 |
+
template=_eg_template,
|
| 70 |
+
input_variables=["chat_history", "question", "answer"],
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
_prefix = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question. You should assume that the question is related to LangChain."""
|
| 74 |
+
_suffix = """## Example:
|
| 75 |
+
|
| 76 |
+
Chat History:
|
| 77 |
+
{chat_history}
|
| 78 |
+
Follow Up Input: {question}
|
| 79 |
+
Standalone question:"""
|
| 80 |
+
eg_store = Weaviate(
|
| 81 |
+
client,
|
| 82 |
+
"Rephrase",
|
| 83 |
+
"content",
|
| 84 |
+
attributes=["question", "answer", "chat_history"],
|
| 85 |
+
)
|
| 86 |
+
example_selector = SemanticSimilarityExampleSelector(vectorstore=eg_store, k=4)
|
| 87 |
+
prompt = FewShotPromptTemplate(
|
| 88 |
+
prefix=_prefix,
|
| 89 |
+
suffix=_suffix,
|
| 90 |
+
example_selector=example_selector,
|
| 91 |
+
example_prompt=_eg_prompt,
|
| 92 |
+
input_variables=["question", "chat_history"],
|
| 93 |
+
)
|
| 94 |
+
llm = OpenAI(temperature=0, model_name="text-davinci-003")
|
| 95 |
+
key_word_extractor = LLMChain(llm=llm, prompt=prompt)
|
| 96 |
|
| 97 |
EXAMPLE_PROMPT = PromptTemplate(
|
| 98 |
template=">Example:\nContent:\n---------\n{page_content}\n----------\nSource: {source}",
|
|
|
|
| 116 |
prompt=PROMPT,
|
| 117 |
document_prompt=EXAMPLE_PROMPT,
|
| 118 |
)
|
| 119 |
+
return CustomChain(chain=doc_chain, vstore=vectorstore, key_word_extractor=key_word_extractor)
|
| 120 |
|
| 121 |
|
| 122 |
def _get_chat_history(chat_history: List[Tuple[str, str]]):
|