Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import openai | |
from gtts import gTTS | |
openai.api_key = os.environ["OPEN_AI_KEY"] | |
#messages = gr.State([ | |
# {"role": "system", "content": "You are a therapist. Respond in less than 5 sentences."} | |
#]) | |
messages = [{"role": "system", "content": "You are a therapist. Respond in less than 5 sentences."}] | |
def transcribe(audio, test): | |
stringIn = test | |
audio_file = open(audio, "rb") | |
# Call the transcribe method with the file-like object | |
transcript = openai.Audio.transcribe("whisper-1", audio_file) | |
#msg_contents.append({"role": "user", "content": transcript["text"]}) | |
#chat_transcript = "" | |
#for message in msg_contents: | |
# if (message["role"] != "system"): | |
# chat_transcript += message["role"] + ": " + message["content"] + "\n\n" | |
return transcript | |
def botResponse(chat_log, msg_contents): | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=msg_contents) | |
system_message = response["choices"][0]["message"]["content"] | |
msg_contents.append({"role": "assistant", "content": system_message}) | |
chat_transcript = chat_log | |
for message in msg_contents: | |
if (message["role"] != "system"): | |
chat_transcript += message["role"] + ": " + message["content"] + "\n\n" | |
return system_message | |
def giveVoice(bot_message): | |
myobj = gTTS(text=bot_message) | |
myobj.save("temp.mp3") | |
dir = os.getcwd() | |
new_path = os.path.join(dir, "temp.mp3") | |
return new_path | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
user_audio = gr.Audio(source="microphone", type="filepath", label="Input Phrase") | |
submit_btn = gr.Button(value="Transcribe") | |
submit2_btn = gr.Button(value="Bot Response") | |
submit3_btn = gr.Button(value="Give Voice") | |
with gr.Column(): | |
#gpt_response = gr.Audio(label="Voice Response") | |
gpt_transcript = gr.Text(label="Generate Transcript") | |
gpt_transcript2 = gr.Text(label="Bot Response") | |
gpt_response = gr.Audio(label="Voice Response") | |
submit_btn.click(transcribe, inputs=[user_audio, "test"] outputs=gpt_transcript) | |
demo.launch(share=False) |