Autoforge / app.py
hvoss-techfak's picture
Update app.py
afc20d4 verified
import json
import string
import uuid
import os
import logging
import zipfile
import importlib
import sentry_sdk
import wandb
from contextlib import redirect_stdout, redirect_stderr
from sentry_sdk import capture_exception
from sentry_sdk.integrations.logging import LoggingIntegration
from sentry_sdk.integrations.starlette import StarletteIntegration
from sentry_sdk.integrations.fastapi import FastApiIntegration
import spaces
dsn = os.getenv("SENTRY_DSN")
if not dsn:
print("WARNING: SENTRY_DSN not set – Sentry disabled")
else:
sentry_sdk.init(
dsn=dsn,
traces_sample_rate=0.1,
integrations=[
StarletteIntegration(
failed_request_status_codes={
400,
422,
*range(500, 599),
}, # also log 4xx from Gradio
),
LoggingIntegration(
level=logging.INFO, # breadcrumb level
event_level=logging.ERROR,
),
FastApiIntegration(),
],
release=os.getenv("HF_SPACE_VERSION", "dev"),
environment="hf_space",
)
sentry_sdk.capture_message("🎉 Sentry is wired up!")
USE_WANDB = "WANDB_API_KEY" in os.environ
if USE_WANDB:
wandb.login(key=os.environ["WANDB_API_KEY"])
else:
print("Warning: WANDB_API_KEY not set. Skipping wandb logging.")
import gradio
import functools
from sentry_sdk import flush
orig_call_fn = gradio.blocks.Blocks.call_function # present in all 3.x & 4.x
@functools.wraps(orig_call_fn)
async def sentry_call_fn(self, *args, **kwargs):
try:
return await orig_call_fn(self, *args, **kwargs)
except Exception as exc:
capture_exception(exc)
flush(timeout=2)
raise
gradio.blocks.Blocks.call_function = sentry_call_fn
import gradio as gr
import pandas as pd
import os
import subprocess
import time
import sys
from datetime import datetime
import re
# --- Configuration ---
#AUTFORGE_SCRIPT_PATH = "auto_forge.py" # Make sure this points to your script
DEFAULT_MATERIALS_CSV = "default_materials.csv"
GRADIO_OUTPUT_BASE_DIR = "output"
os.makedirs(GRADIO_OUTPUT_BASE_DIR, exist_ok=True)
REQUIRED_SCRIPT_COLS = ["Brand", " Name", " TD", " Color"]
DISPLAY_COL_MAP = {
"Brand": "Brand",
" Name": "Name",
" TD": "TD",
" Color": "Color (Hex)",
}
def exc_text(exc: BaseException) -> str:
"""
Return the human-readable message of *exc*.
Falls back to the class name if the message is empty.
"""
txt = str(exc).strip()
if txt:
return txt
if exc.args:
return " ".join(str(a) for a in exc.args).strip()
return exc.__class__.__name__
def ensure_required_cols(df, *, in_display_space):
"""
Return a copy of *df* with every required column present.
If *in_display_space* is True we use the display names
(Brand, Name, TD, Color (Hex)); otherwise we use the script names.
"""
target_cols = (
DISPLAY_COL_MAP if in_display_space else {k: k for k in REQUIRED_SCRIPT_COLS}
)
df_fixed = df.copy()
for col_script, col_display in target_cols.items():
if col_display not in df_fixed.columns:
# sensible defaults
if "TD" in col_display:
default = 0.0
elif "Color" in col_display:
default = "#000000"
elif "Owned" in col_display: # NEW
default = "false"
else:
default = ""
df_fixed[col_display] = default
# order columns nicely
return df_fixed[list(target_cols.values())]
def rgba_to_hex(col: str) -> str:
"""
Turn 'rgba(r, g, b, a)' or 'rgb(r, g, b)' into '#RRGGBB'.
If the input is already a hex code or anything unexpected,
return it unchanged.
"""
if not isinstance(col, str):
return col
col = col.strip()
if col.startswith("#"): # already fine
return col.upper()
m = re.match(
r"rgba?\(\s*([\d.]+)\s*,\s*([\d.]+)\s*,\s*([\d.]+)(?:\s*,\s*[\d.]+)?\s*\)",
col,
)
if not m:
return col # not something we recognise
r, g, b = (int(float(x)) for x in m.groups()[:3])
return "#{:02X}{:02X}{:02X}".format(r, g, b)
def zip_dir_no_compress(src_dir: str, dest_zip: str) -> str:
"""Create *dest_zip* from *src_dir* using no compression (ZIP_STORED)."""
t0 = time.time()
with zipfile.ZipFile(dest_zip, "w",
compression=zipfile.ZIP_STORED,
allowZip64=True) as zf:
for root, _, files in os.walk(src_dir):
for fname in files:
fpath = os.path.join(root, fname)
# keep folder structure inside the archive but drop the leading path
zf.write(fpath, os.path.relpath(fpath, src_dir))
print(f"Zipping finished in {time.time() - t0:.1f}s")
return dest_zip
# --- Helper Functions ---
def get_script_args_info(exclude_args=None):
if exclude_args is None:
exclude_args = []
all_args_info = [
# input_image is handled separately in the UI
{
"name": "--iterations",
"type": "number",
"default": 4000,
"help": "Number of optimization iterations",
},
{
"name": "--layer_height",
"type": "number",
"default": 0.04,
"step": 0.01,
"help": "Layer thickness in mm",
},
{
"name": "--max_layers",
"type": "number",
"default": 75,
"precision": 0,
"help": "Maximum number of layers",
},
{
"name": "--learning_rate",
"type": "number",
"default": 0.015,
"step": 0.001,
"help": "Learning rate for optimization",
},
{
"name": "--background_height",
"type": "number",
"default": 0.4,
"step": 0.01,
"help": "Height of the background in mm",
},
{
"name": "--background_color",
"type": "colorpicker",
"default": "#000000",
"help": "Background color",
},
{
"name": "--stl_output_size",
"type": "number",
"default": 100,
"precision": 0,
"help": "Size of the longest dimension of the output STL file in mm",
},
{
"name": "--nozzle_diameter",
"type": "number",
"default": 0.4,
"step": 0.1,
"help": "Diameter of the printer nozzle in mm",
},
{
"name": "--pruning_max_colors",
"type": "number",
"default": 100,
"precision": 0,
"help": "Max number of colors allowed after pruning",
},
{
"name": "--pruning_max_swaps",
"type": "number",
"default": 20,
"precision": 0,
"help": "Max number of swaps allowed after pruning",
},
{
"name": "--pruning_max_layer",
"type": "number",
"default": 75,
"precision": 0,
"help": "Max number of layers allowed after pruning",
},
{
"name": "--warmup_fraction",
"type": "slider",
"default": 1.0,
"min": 0.0,
"max": 1.0,
"step": 0.01,
"help": "Fraction of iterations for keeping the tau at the initial value",
},
{
"name": "--learning_rate_warmup_fraction",
"type": "slider",
"default": 0.01,
"min": 0.0,
"max": 1.0,
"step": 0.01,
"help": "Fraction of iterations that the learning rate is increasing (warmup)",
},
{
"name": "--early_stopping",
"type": "number",
"default": 5000,
"precision": 0,
"help": "Number of steps without improvement before stopping",
},
{
"name": "--fast_pruning_percent",
"type": "slider",
"default": 0.05,
"min": 0.0,
"max": 1.0,
"step": 0.01,
"help": "Percentage of increment search for fast pruning. If unsure just keep it at 0.05 (5%).",
},
{
"name": "--random_seed",
"type": "number",
"default": 0,
"precision": 0,
"help": "Specify the random seed, or use 0 for automatic generation",
},
{
"name": "--num_init_rounds",
"type": "number",
"default": 8,
"precision": 0,
"help": "Number of rounds to choose the starting height map from.",
},
{
"name": "--num_init_cluster_layers",
"type": "number",
"default": 35,
"precision": 0,
"help": "Number of layer clusters for the initialization.",
},
]
return [arg for arg in all_args_info if arg["name"] not in exclude_args]
# Initial filament data
initial_filament_data = {
"Brand": ["Generic", "Generic", "Generic","Generic","Generic","Generic",],
" Name": ["PLA Black", "PLA Grey", "PLA White","PLA Red","PLA Green","PLA Blue"],
" TD": [5.0, 5.0, 5.0, 5.0, 5.0, 5.0],
" Color": ["#000000", "#808080", "#FFFFFF","#FF0000","#00FF00","#0000FF"],
" Owned": ["true", "true", "true", "true", "true", "true"], # ← add
}
initial_df = pd.DataFrame(initial_filament_data)
if os.path.exists(DEFAULT_MATERIALS_CSV):
try:
initial_df = pd.read_csv(DEFAULT_MATERIALS_CSV)
for col in ["Brand", " Name", " TD", " Color"]:
if col not in initial_df.columns:
initial_df[col] = None
initial_df = initial_df[["Brand", " Name", " TD", " Color"]].astype(
{" TD": float, " Color": str}
)
except Exception as e:
print(f"Warning: Could not load {DEFAULT_MATERIALS_CSV}: {e}. Using default.")
initial_df = pd.DataFrame(initial_filament_data)
else:
initial_df.to_csv(DEFAULT_MATERIALS_CSV, index=False)
def run_autoforge_process(cmd, log_path):
"""Run AutoForge in-process and stream its console output to *log_path*."""
from joblib import parallel_backend
cli_args = cmd[1:] # skip the literal "autoforge"
autoforge_main = importlib.import_module("autoforge.__main__")
exit_code = 0
with open(log_path, "w", buffering=1, encoding="utf-8") as log_f, \
redirect_stdout(log_f), redirect_stderr(log_f), parallel_backend("threading", n_jobs=-1):
try:
sys.argv = ["autoforge"] + cli_args
autoforge_main.main() # runs until completion
except SystemExit as e: # AutoForge calls sys.exit()
exit_code = e.code
return exit_code
# Helper for creating an empty 10-tuple for error returns
def create_empty_error_outputs(log_message=""):
return (
log_message, # progress_output
None, # final_image_preview
gr.update(visible=False, interactive=False), # ### ZIP: download_zip
)
def load_filaments_from_json_upload(file_obj):
"""
Called when the user picks a .json file and converts it to the
script-style DataFrame expected by the rest of the app.
"""
# ── early-out when nothing was chosen ──────────────────────────────
if file_obj is None:
current_script_df = filament_df_state.value
if current_script_df is not None and not current_script_df.empty:
return current_script_df.rename(
columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
)
return initial_df.copy().rename(
columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
)
try:
with open(file_obj.name, "r", encoding="utf-8") as f:
data = json.load(f)
if isinstance(data, dict) and "Filaments" in data:
data = data["Filaments"]
df_loaded = pd.DataFrame(data)
# strip whitespace around every header first
df_loaded.columns = [c.strip() for c in df_loaded.columns]
# convert Hue-forge “nice” headers to the script headers that
# still carry a leading blank
rename_map = {
"Name": " Name",
"Transmissivity": " TD",
"Color": " Color",
}
df_loaded.rename(
columns={k: v for k, v in rename_map.items() if k in df_loaded.columns},
inplace=True,
)
if " TD" in df_loaded.columns:
df_loaded[" TD"] = pd.to_numeric(df_loaded[" TD"], errors="coerce").fillna(
0.0
)
# now make sure the usual helpers see exactly the expected headers
df_loaded = ensure_required_cols(df_loaded, in_display_space=False)
expected_cols = ["Brand", " Name", " TD", " Color"]
if not all(col in df_loaded.columns for col in expected_cols):
gr.Error(
f"JSON must contain keys/columns: {', '.join(expected_cols)}. "
f"Found: {df_loaded.columns.tolist()}"
)
return filament_table.value # keep the table unchanged
filament_df_state.value = df_loaded.copy()
return df_loaded.rename(
columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
)
except Exception as e:
gr.Error(f"Error loading JSON: {e}")
return filament_table.value # keep current table on failure
# --- Gradio UI Definition ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# [Autoforge](https://github.com/hvoss-techfak/AutoForge) Web UI")
filament_df_state = gr.State(initial_df.copy())
current_run_output_dir = gr.State(None)
with gr.Tabs():
with gr.TabItem("Filament Management"):
gr.Markdown(
'Manage your filament list here. This list will be used by Autoforge during the optimization process.'
)
gr.Markdown(
'If you have Hueforge, you can export your filaments under "Filaments -> Export" in the Hueforge software. Please make sure to select "CSV" instead of "JSON" during the export dialog.'
)
gr.Markdown(
'If you want to load your personal library of Hueforge filaments, you can also simply paste this path into your explorer address bar: %APPDATA%\HueForge\Filaments\ and import your "personal_library.json" using the "Load Filaments Json" button.'
)
gr.Markdown(
'To remove a filament simply right-click on any of the fields and select "Delete Row"'
)
gr.Markdown(
'Hint: If you have an AMS 3d printer try giving it your entire filament library and then set "pruning_max_colors" under "Autoforge Parameters" in the second tab to your number of AMS slots.'
' Autoforge will automatically select the best matching colors for your image.'
)
with gr.Row():
load_csv_button = gr.UploadButton(
"Load Filaments CSV", file_types=[".csv"]
)
load_json_button = gr.UploadButton( # NEW
"Load Filaments JSON", file_types=[".json"]
)
save_csv_button = gr.Button("Save Current Filaments to CSV")
filament_table = gr.DataFrame(
value=ensure_required_cols(
initial_df.copy().rename(
columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
),
in_display_space=True,
),
headers=["Brand", "Name", "TD", "Color (Hex)"],
datatype=["str", "str", "number", "str"],
interactive=True,
label="Filaments",
)
gr.Markdown("## Add New Filament")
with gr.Row():
new_brand = gr.Textbox(label="Brand")
new_name = gr.Textbox(label="Name")
with gr.Row():
new_td = gr.Number(
label="TD (Transmission/Opacity)",
value=1.0,
minimum=0,
maximum=100,
step=0.1,
)
new_color_hex = gr.ColorPicker(label="Color", value="#FF0000")
add_filament_button = gr.Button("Add Filament to Table")
download_csv_trigger = gr.File(
label="Download Filament CSV", visible=False, interactive=False
)
def update_filament_df_state_from_table(display_df):
display_df = ensure_required_cols(display_df, in_display_space=True)
# make sure every colour is hex
if "Color (Hex)" in display_df.columns:
display_df["Color (Hex)"] = display_df["Color (Hex)"].apply(
rgba_to_hex
)
script_df = display_df.rename(
columns={"Name": " Name", "TD": " TD", "Color (Hex)": " Color"}
)
script_df = ensure_required_cols(script_df, in_display_space=False)
filament_df_state.value = script_df
def add_filament_to_table(current_display_df, brand, name, td, color_hex):
if not brand or not name:
gr.Warning("Brand and Name cannot be empty.")
return current_display_df
color_hex = rgba_to_hex(color_hex) # <-- new line
new_row = pd.DataFrame(
[{"Brand": brand, "Name": name, "TD": td, "Color (Hex)": color_hex}]
)
updated_display_df = pd.concat(
[current_display_df, new_row], ignore_index=True
)
update_filament_df_state_from_table(updated_display_df)
return updated_display_df
def load_filaments_from_csv_upload(file_obj):
if file_obj is None:
current_script_df = filament_df_state.value
if current_script_df is not None and not current_script_df.empty:
return current_script_df.rename(
columns={
" Name": "Name",
" TD": "TD",
" Color": "Color (Hex)",
}
)
return initial_df.copy().rename(
columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
)
try:
loaded_script_df = pd.read_csv(file_obj.name)
loaded_script_df = ensure_required_cols(
loaded_script_df, in_display_space=False
)
expected_cols = ["Brand", " Name", " TD", " Color"]
if not all(
col in loaded_script_df.columns for col in expected_cols
):
gr.Error(
f"CSV must contain columns: {', '.join(expected_cols)}. Found: {loaded_script_df.columns.tolist()}"
)
capture_exception(
Exception(
f"CSV must contain columns: {', '.join(expected_cols)}. Found: {loaded_script_df.columns.tolist()}"
)
)
current_script_df = filament_df_state.value
if (
current_script_df is not None
and not current_script_df.empty
):
return current_script_df.rename(
columns={
" Name": "Name",
" TD": "TD",
" Color": "Color (Hex)",
}
)
return initial_df.copy().rename(
columns={
" Name": "Name",
" TD": "TD",
" Color": "Color (Hex)",
}
)
filament_df_state.value = loaded_script_df.copy()
return loaded_script_df.rename(
columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
)
except Exception as e:
gr.Error(f"Error loading CSV: {e}")
capture_exception(e)
current_script_df = filament_df_state.value
if current_script_df is not None and not current_script_df.empty:
return current_script_df.rename(
columns={
" Name": "Name",
" TD": "TD",
" Color": "Color (Hex)",
}
)
return initial_df.copy().rename(
columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
)
def save_filaments_to_file_for_download(current_script_df_from_state):
if (
current_script_df_from_state is None
or current_script_df_from_state.empty
):
gr.Warning("Filament table is empty. Nothing to save.")
return None
df_to_save = current_script_df_from_state.copy()
required_cols = ["Brand", " Name", " TD", " Color"]
if not all(col in df_to_save.columns for col in required_cols):
gr.Error(
f"Cannot save. DataFrame missing required script columns. Expected: {required_cols}. Found: {df_to_save.columns.tolist()}"
)
capture_exception(Exception(f"Missing columns: {df_to_save.columns.tolist()}"))
return None
temp_dir = os.path.join(GRADIO_OUTPUT_BASE_DIR, "_temp_downloads")
os.makedirs(temp_dir, exist_ok=True)
temp_filament_csv_path = os.path.join(
temp_dir,
f"filaments_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
)
try:
df_to_save.to_csv(temp_filament_csv_path, index=False)
gr.Info("Filaments prepared for download.")
return gr.File(
value=temp_filament_csv_path,
label="Download Filament CSV",
interactive=True,
visible=True,
)
except Exception as e:
capture_exception(e)
gr.Error(f"Error saving CSV for download: {e}")
return None
filament_table.change(
update_filament_df_state_from_table,
inputs=[filament_table],
outputs=None,
queue=False,
)
add_filament_button.click(
add_filament_to_table,
inputs=[filament_table, new_brand, new_name, new_td, new_color_hex],
outputs=[filament_table],
)
load_csv_button.upload(
load_filaments_from_csv_upload,
inputs=[load_csv_button],
outputs=[filament_table],
)
load_json_button.upload(
load_filaments_from_json_upload,
inputs=[load_json_button],
outputs=[filament_table],
)
save_csv_button.click(
save_filaments_to_file_for_download,
inputs=[filament_df_state],
outputs=[download_csv_trigger],
)
with gr.TabItem("Run Autoforge"):
accordion_params_dict = {}
accordion_params_ordered_names = []
gr.Markdown(
'Here you can upload an image, adjust the parameters and run the Autoforge process. The filaments from the "Filament Management" Tab are automatically used. After the process completes you can download the results at the bottom of the page.'
)
gr.Markdown(
'If you want to limit the number of colors or color swaps you can find the option under the "Autoforge Parameters" as "pruning_max_colors" and "pruning_max_swaps"'
)
gr.Markdown(
'Please note that huggingface enforces a maximum execution time of two minutes. Depending on your configuration (especially iteration count) it is possible to exceed this time limit. In that case you will see a "GPU Task aborted" error or simply "Error".'
' If you need more time, take a look at the [Autoforge Github Page](https://github.com/hvoss-techfak/AutoForge) to see how you can run the program locally, or pull the docker container for this project (upper right corner -> three dots -> "run locally")'
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Input Image (Required)")
input_image_component = gr.Image( # keep transparency alive
type="pil", # <- no temporary JPEG cache
image_mode="RGBA", # tells Gradio to expect alpha
label="Upload Image",
sources=["upload"],
interactive=True,
)
with gr.Column(scale=2):
gr.Markdown("### Preview")
with gr.Accordion("Progress & Output", open=True):
final_image_preview = gr.Image(
label="Model Preview",
type="filepath",
interactive=False,
)
with gr.Row():
with gr.Accordion("Autoforge Parameters", open=False):
args_for_accordion = get_script_args_info(
exclude_args=["--input_image"]
)
for arg in args_for_accordion:
label, info, default_val = (
f"{arg['name']}",
arg["help"],
arg.get("default"),
)
if arg["type"] == "number":
accordion_params_dict[arg["name"]] = gr.Number(
label=label,
value=default_val,
info=info,
minimum=arg.get("min"),
maximum=arg.get("max"),
step=arg.get(
"step",
0.001 if isinstance(default_val, float) else 1,
),
precision=arg.get("precision", None),
)
elif arg["type"] == "slider":
accordion_params_dict[arg["name"]] = gr.Slider(
label=label,
value=default_val,
info=info,
minimum=arg.get("min", 0),
maximum=arg.get("max", 1),
step=arg.get("step", 0.01),
)
elif arg["type"] == "checkbox":
accordion_params_dict[arg["name"]] = gr.Checkbox(
label=label, value=default_val, info=info
)
elif arg["type"] == "colorpicker":
accordion_params_dict[arg["name"]] = gr.ColorPicker(
label=label, value=default_val, info=info
)
else:
accordion_params_dict[arg["name"]] = gr.Textbox(
label=label, value=str(default_val), info=info
)
accordion_params_ordered_names.append(arg["name"])
run_button = gr.Button(
"Run Autoforge Process",
variant="primary",
elem_id="run_button_full_width",
)
progress_output = gr.Textbox(
label="Console Output",
lines=15,
autoscroll=True,
show_copy_button=False,
)
with gr.Row():
download_results = gr.File(
label="Download results",
file_count="multiple",
interactive=True,
visible=False,
)
# --- Backend Function for Running the Script ---
@spaces.GPU(duration=120)
def execute_autoforge_script(
current_filaments_df_state_val, input_image, *accordion_param_values
):
log_output = []
# 0. Validate Inputs
if input_image is None:
gr.Error("Input Image is required! Please upload an image.")
capture_exception(Exception("Input Image is required!"))
return create_empty_error_outputs("Error: Input Image is required!")
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") + "_" + str(uuid.uuid4())
run_output_dir_val = os.path.join(GRADIO_OUTPUT_BASE_DIR, f"run_{timestamp}")
os.makedirs(run_output_dir_val, exist_ok=True)
current_run_output_dir.value = run_output_dir_val
# 1. Save current filaments
if (
current_filaments_df_state_val is None
or current_filaments_df_state_val.empty
):
gr.Error("Filament table is empty. Please add filaments.")
capture_exception(
Exception("Filament table is empty. Please add filaments.")
)
return create_empty_error_outputs("Error: Filament table is empty.")
temp_filament_csv = os.path.join(run_output_dir_val, "materials.csv")
df_to_save = current_filaments_df_state_val.copy()
required_cols = ["Brand", " Name", " TD", " Color"]
missing_cols = [col for col in required_cols if col not in df_to_save.columns]
if missing_cols:
err_msg = (
f"Error: Filament data is missing columns: {', '.join(missing_cols)}."
)
gr.Error(err_msg)
capture_exception(
Exception(f"Filament data is missing columns: {', '.join(missing_cols)}.")
)
return create_empty_error_outputs(err_msg)
try:
df_to_save.to_csv(temp_filament_csv, index=False)
except Exception as e:
capture_exception(e)
err_msg = f"Error saving temporary filament CSV: {e}"
gr.Error(err_msg)
return create_empty_error_outputs(err_msg)
# 2. Construct command
python_executable = sys.executable or "python"
command = ["autoforge",]
command.extend(["--csv_file", temp_filament_csv])
command.extend(["--output_folder", run_output_dir_val])
command.extend(["--disable_visualization_for_gradio","1"])
try:
# decide where to store the image we pass to Autoforge
script_input_image_path = os.path.join(
run_output_dir_val, "input_image.png"
)
input_image.save(script_input_image_path, format="PNG")
command.extend(["--input_image", script_input_image_path])
except Exception as e:
capture_exception(e)
err_msg = f"Error handling input image: {e}"
gr.Error(err_msg)
return create_empty_error_outputs(err_msg)
param_dict = dict(zip(accordion_params_ordered_names, accordion_param_values))
for arg_name, arg_widget_val in param_dict.items():
if arg_widget_val is None or arg_widget_val == "":
arg_info_list = [
item for item in get_script_args_info() if item["name"] == arg_name
] # get full list to check type
if (
arg_info_list
and arg_info_list[0]["type"] == "checkbox"
and arg_widget_val is False
):
continue
else:
continue
if arg_name == "--background_color":
arg_widget_val = rgba_to_hex(arg_widget_val)
if isinstance(arg_widget_val, bool):
if arg_widget_val:
command.append(arg_name)
else:
command.extend([arg_name, str(arg_widget_val)])
# 3. Run script
log_output = [
"Starting Autoforge process at ",
f"{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n",
f"Output directory: {run_output_dir_val}\n",
f"Command: {' '.join(command)}\n\n",
]
yield create_empty_error_outputs(log_output) # clear UI and show header
def _maybe_new_preview():
"""
If vis_temp.png has a newer mtime than last time, copy it to a
stamped name (to defeat browser cache) and return that path.
Otherwise return gr.update() so the image stays as-is.
"""
from gradio import update # local import for clarity
nonlocal preview_mtime
src = os.path.join(run_output_dir_val, "vis_temp.png")
if not os.path.exists(src):
return update() # nothing new, keep old
mtime = os.path.getmtime(src)
if mtime <= preview_mtime: # unchanged
return update() # → no UI update
return src # → refresh image
# ---- run Autoforge on the GPU in a helper thread ------------------
log_file = os.path.join(run_output_dir_val, "autoforge_live.log")
open(log_file, "w", encoding="utf-8").close()
cmd_str = " ".join(command)
sentry_sdk.capture_event(
{
"message": "Autoforge process started",
"level": "info",
"fingerprint": ["autoforge-process-start"], # every start groups here
"extra": {"command": cmd_str}, # still searchable
}
)
# simple thread that just calls the GPU helper and stores the exit code
import threading
class Worker(threading.Thread):
def __init__(self, cmd, log_path):
super().__init__(daemon=True)
self.cmd, self.log_path = cmd, log_path
self.returncode = None
def run(self):
try:
self.returncode = run_autoforge_process(self.cmd, self.log_path)
except Exception as e:
exc_str = exc_text(e)
self.exc = e
capture_exception(e) # still goes to Sentry
# make the error visible in the UI console
with open(self.log_path, "a", encoding="utf-8") as lf:
lf.write(
"\nERROR: {}. This usually means that you, your IP adress or the space has no free GPU "
"minutes left, or the process took too long due to too many filaments or changed parameters. Please clone the docker container, run it locally or wait for a bit.\n".format(exc_str)
)
gr.Error(
"ERROR: {}. This usually means that you, your IP adress or the the space has no free GPU "
"minutes left, or the process took too long due to too many filaments or changed parameters. Please clone the docker container, run it locally or wait for a bit.\n".format(exc_str)
)
# a non-zero code tells the outer loop something went wrong
self.returncode = -1
try:
worker = Worker(command, log_file)
worker.start()
preview_mtime = 0
last_push = 0
file_pos = 0 # how far we've read
while worker.is_alive() or file_pos < os.path.getsize(log_file):
# read any new console text
with open(log_file, "r", encoding="utf-8") as lf:
lf.seek(file_pos)
new_txt = lf.read()
file_pos = lf.tell()
log_output += new_txt
now = time.time()
if now - last_push >= 1.0: # one-second UI tick
current_preview = _maybe_new_preview()
yield (
"".join(log_output),
current_preview,
gr.update(), # placeholder for download widget
)
last_push = now
time.sleep(0.05)
worker.join() # make sure it’s done
except RuntimeError as e:
# Show toast to user
log_output += repr(e)
gr.Error(str(e)) # <-- this is the toast
capture_exception(e)
with open(log_file, "r", encoding="utf-8") as lf:
lf.seek(file_pos)
new_txt = lf.read()
file_pos = lf.tell()
log_output += new_txt
yield (
"".join(log_output),
current_preview,
gr.update(), # placeholder for download widget
)
return create_empty_error_outputs(str(e))
if getattr(worker, "exc", None) is not None:
# worker.exc will be the ZeroGPU / scheduler error
err_msg = f"GPU run failed: {worker.exc}"
log_output += f"\n{err_msg}\n"
gr.Error(err_msg) # toast
yield ( # push the message into the textbox
"".join(log_output),
_maybe_new_preview(),
gr.update(),
)
return # stop the coroutine cleanly
# If the GPU scheduler threw, we already wrote the text into the log.
# Just read the tail once more so it reaches the UI textbox.
with open(log_file, "r", encoding="utf-8") as lf:
lf.seek(file_pos)
log_output += lf.read()
return_code = worker.returncode
try:
sentry_sdk.add_attachment(
path=log_file,
filename="autoforge.log",
content_type="text/plain",
)
except Exception as e:
capture_exception(e)
if worker.returncode != 0:
err_msg = (
f"Autoforge exited with code {worker.returncode}\n"
"See the console output above for details."
)
log_output += f"\n{err_msg}\n"
gr.Error(err_msg)
yield (
"".join(log_output),
_maybe_new_preview(),
gr.update(),
)
return
log_output += (
"\nAutoforge process completed successfully!"
if return_code == 0
else f"\nAutoforge process failed with exit code {return_code}."
)
log_str = " ".join(log_output)
files_to_offer = [
p
for p in [
os.path.join(run_output_dir_val, "final_model.png"),
os.path.join(run_output_dir_val, "final_model.stl"),
os.path.join(run_output_dir_val, "swap_instructions.txt"),
os.path.join(run_output_dir_val, "project_file.hfp"),
]
if os.path.exists(p)
]
png_path = os.path.join(run_output_dir_val, "final_model.png")
out_png = png_path if os.path.exists(png_path) else None
if out_png is None:
log_output += "\nWarning: final_model.png not found in output."
sentry_sdk.capture_event( # moved inside the same scope
{
"message": "Autoforge process finished",
"level": "info",
"fingerprint": ["autoforge-process-finished"],
"extra": {"log": log_str},
}
)
if USE_WANDB:
run = None
try:
run = wandb.init(
project="autoforge",
name=f"run_{timestamp}",
notes="Autoforge Web UI run",
tags=["autoforge", "gradio"],
)
wlogs= {"input_image": wandb.Image(script_input_image_path),}
if out_png:
wlogs["output_image"] = wandb.Image(out_png)
material_csv = pd.read_csv(temp_filament_csv)
table = wandb.Table(dataframe=material_csv)
wlogs["materials"] = table
#log log_output as pandas table
from wandb import Html
log_text = "".join(log_output).replace("\r", "\n")
def clean_log_strict(text: str) -> str:
# Keep only printable characters + newline + tab
allowed = set(string.printable) | {"\n", "\t"}
return "".join(ch for ch in text if ch in allowed)
log_text_cleaned = clean_log_strict(log_text)
wlogs["log"] = Html(f"<pre>{log_text_cleaned}</pre>")
wandb.log(wlogs)
except Exception as e:
#we don't want wandb errors logged in sentry
print(e)
finally:
if run is not None:
run.finish()
yield (
"".join(log_output), # progress_output
out_png, # final_image_preview (same as before)
gr.update( # download_results
value=files_to_offer,
visible=True,
interactive=True,
),
)
run_inputs = [filament_df_state, input_image_component] + [
accordion_params_dict[name] for name in accordion_params_ordered_names
]
run_outputs = [
progress_output,
final_image_preview,
download_results, # ### ZIP PATCH: only three outputs now
]
run_button.click(execute_autoforge_script, inputs=run_inputs, outputs=run_outputs)
css = """ #run_button_full_width { width: 100%; } """
if __name__ == "__main__":
if not os.path.exists(DEFAULT_MATERIALS_CSV):
print(f"Creating default filament file: {DEFAULT_MATERIALS_CSV}")
try:
initial_df.to_csv(DEFAULT_MATERIALS_CSV, index=False)
except Exception as e:
print(f"Could not write default {DEFAULT_MATERIALS_CSV}: {e}")
print("To run the UI, execute: python app.py") # Corrected to python app.py
demo.queue(default_concurrency_limit=1).launch(share=False)