hvaldez's picture
first commit
c18a21e verified
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import csv
import glob
import json
import numpy as np
import os.path as osp
import pickle
import random
import decord
import pandas as pd
import torch
def datetime2sec(str):
hh, mm, ss = str.split(':')
return int(hh) * 3600 + int(mm) * 60 + float(ss)
def video_loader(root, vid, second, end_second=None, chunk_len=300, fps=30, clip_length=32, jitter=False):
if chunk_len == -1:
vr = decord.VideoReader(osp.join(root, '{}.mp4'.format(vid)))
second_offset = second
if end_second is not None:
end_second = min(end_second, len(vr) / vr.get_avg_fps())
else:
end_second = len(vr) / vr.get_avg_fps()
else:
chunk_start = int(second) // chunk_len * chunk_len
second_offset = second - chunk_start
vr = decord.VideoReader(osp.join(root, '{}.mp4'.format(vid), '{}.mp4'.format(chunk_start)))
if fps == -1:
fps = vr.get_avg_fps()
# calculate frame_ids
frame_offset = int(np.round(second_offset * fps))
total_duration = max(int((end_second - second) * fps), clip_length)
if chunk_len == -1:
if end_second <= second:
raise ValueError("end_second should be greater than second")
else:
frame_ids = get_frame_ids(frame_offset, min(frame_offset + total_duration, len(vr)), num_segments=clip_length, jitter=jitter)
else:
frame_ids = get_frame_ids(frame_offset, frame_offset + total_duration, num_segments=clip_length, jitter=jitter)
# load frames
if max(frame_ids) < len(vr):
try:
frames = vr.get_batch(frame_ids).asnumpy()
except decord.DECORDError as error:
print(error)
frames = vr.get_batch([0] * len(frame_ids)).asnumpy()
else:
# find the remaining frames in the next chunk
try:
frame_ids_part1 = list(filter(lambda frame_id: frame_id < len(vr), frame_ids))
frames_part1 = vr.get_batch(frame_ids_part1).asnumpy()
vr2 = decord.VideoReader(osp.join(root, '{}.mp4'.format(vid), '{}.mp4'.format(chunk_start + chunk_len)))
frame_ids_part2 = list(filter(lambda frame_id: frame_id >= len(vr), frame_ids))
frame_ids_part2 = [min(frame_id % len(vr), len(vr2) - 1) for frame_id in frame_ids_part2]
frames_part2 = vr2.get_batch(frame_ids_part2).asnumpy()
frames = np.concatenate([frames_part1, frames_part2], axis=0)
# the next chunk does not exist; the current chunk is the last one
except (RuntimeError, decord.DECORDError) as error:
print(error)
frame_ids = get_frame_ids(min(frame_offset, len(vr) - 1), len(vr), num_segments=clip_length, jitter=jitter)
frames = vr.get_batch(frame_ids).asnumpy()
frames = [torch.tensor(frame, dtype=torch.float32) for frame in frames]
return torch.stack(frames, dim=0)
def get_frame_ids(start_frame, end_frame, num_segments=32, jitter=True):
seg_size = float(end_frame - start_frame - 1) / num_segments
seq = []
for i in range(num_segments):
start = int(np.round(seg_size * i) + start_frame)
end = int(np.round(seg_size * (i + 1)) + start_frame)
end = min(end, end_frame)
if jitter:
frame_id = np.random.randint(low=start, high=(end + 1))
else:
frame_id = (start + end) // 2
seq.append(frame_id)
return seq
def video_loader_by_frames(root, vid, frame_ids):
vr = decord.VideoReader(osp.join(root, vid))
try:
frames = vr.get_batch(frame_ids).asnumpy()
frames = [torch.tensor(frame, dtype=torch.float32) for frame in frames]
except (IndexError, decord.DECORDError) as error:
print(error)
print("Erroneous video: ", vid)
frames = [torch.zeros((240, 320, 3)) for _ in range(len(frame_ids))]
return torch.stack(frames, dim=0)
class VideoCaptionDatasetBase(torch.utils.data.Dataset):
def __init__(self, dataset, root, metadata, is_trimmed=True):
self.dataset = dataset
self.root = root
self.is_trimmed = is_trimmed
if self.dataset == 'ego4d':
with open(metadata, 'rb') as f:
self.samples = pickle.load(f)
elif self.dataset == 'ego4d_mcq':
with open(metadata, 'r') as f:
self.samples = json.load(f)
elif self.dataset in ['ek100_cls', 'ek100_mir']:
video_list = glob.glob(osp.join(self.root, '*/*.MP4'))
fps_dict = {video: decord.VideoReader(video).get_avg_fps() for video in video_list}
self.samples = []
with open(metadata) as f:
csv_reader = csv.reader(f)
_ = next(csv_reader) # skip the header
for row in csv_reader:
pid, vid = row[1:3]
# start_frame, end_frame = int(row[6]), int(row[7])
# Deprecated: some videos might have fps mismatch issue
start_timestamp, end_timestamp = datetime2sec(row[4]), datetime2sec(row[5])
narration = row[8]
verb, noun = int(row[10]), int(row[12])
vid_path = '{}/{}.MP4'.format(pid, vid)
fps = fps_dict[osp.join(self.root, vid_path)]
start_frame = int(np.round(fps * start_timestamp))
end_frame = int(np.ceil(fps * end_timestamp))
self.samples.append((vid_path, start_frame, end_frame, narration, verb, noun))
if self.dataset == 'ek100_mir':
self.metadata_sentence = pd.read_csv(metadata[:metadata.index('.csv')] + '_sentence.csv')
if 'train' in metadata:
self.relevancy_mat = pickle.load(open(osp.join(osp.dirname(metadata), 'relevancy', 'caption_relevancy_EPIC_100_retrieval_train.pkl'), 'rb'))
elif 'test' in metadata:
self.relevancy_mat = pickle.load(open(osp.join(osp.dirname(metadata), 'relevancy', 'caption_relevancy_EPIC_100_retrieval_test.pkl'), 'rb'))
else:
raise ValueError('{} should contain either "train" or "test"!'.format(metadata))
self.relevancy = .1
elif self.dataset == 'egtea':
video_list = glob.glob(osp.join(self.root, '*/*'))
len_dict = {video: len(decord.VideoReader(video)) for video in video_list}
vn_list, labels = [], []
for row in open(osp.join(osp.dirname(metadata), 'action_idx.txt')):
row = row.strip()
vn = int(row.split(' ')[-1])
vn_list.append(vn)
narration = ' '.join(row.split(' ')[:-1])
labels.append(narration.replace('_', ' ').lower())
# labels.append(narration)
mapping_act2narration = {vn: narration for vn, narration in zip(vn_list, labels)}
self.samples = []
with open(metadata) as f:
for row in f:
clip_id, action_idx = row.strip().split(' ')[:2]
video_id = '-'.join(clip_id.split('-')[:3])
vid_relpath = osp.join(video_id, '{}.mp4'.format(clip_id))
vid_fullpath = osp.join(self.root, video_id, '{}.mp4'.format(clip_id))
self.samples.append((vid_relpath, 0, len_dict[vid_fullpath], mapping_act2narration[int(action_idx)]))
elif self.dataset == 'charades_ego':
video_list = glob.glob(osp.join(self.root, '*.mp4'))
fps_dict = {video: decord.VideoReader(video).get_avg_fps() for video in video_list}
self.samples = []
with open(metadata) as f:
csv_reader = csv.reader(f)
_ = next(csv_reader) # skip the header
for row in csv_reader:
video_id = row[0]
if self.is_trimmed:
for action_tuple in row[9].split(';'):
if not action_tuple:
continue
action, start_timestamp, end_timestamp = action_tuple.split(' ')
start_timestamp, end_timestamp = float(start_timestamp), float(end_timestamp)
vid_path = '{}.mp4'.format(video_id)
fps = fps_dict[osp.join(self.root, vid_path)]
start_frame = int(np.round(fps * start_timestamp))
end_frame = int(np.ceil(fps * end_timestamp))
self.samples.append((vid_path, start_frame, end_frame, action))
else:
if not row[9]:
action_list = []
else:
action_list = [action_tuple.split(' ')[0] for action_tuple in row[9].split(';')]
vid_path = '{}.mp4'.format(video_id)
fps = fps_dict[osp.join(self.root, vid_path)]
duration = fps * float(row[10])
self.samples.append((vid_path, 0, duration, action_list))
elif self.dataset == 'charades_ego_trimmed':
with open(metadata, 'rb') as f:
self.samples = pickle.load(f)
else:
raise NotImplementedError
def get_raw_item(self, i, is_training=True, num_clips=1, clip_length=32, clip_stride=2, sparse_sample=False,
narration_selection='random'):
if self.dataset == 'ego4d':
if len(self.samples[i]) == 4:
vid, start_second, end_second, narration = self.samples[i]
frames = video_loader(self.root, vid, start_second,
end_second=end_second,
clip_length=clip_length,
jitter=is_training)
if isinstance(narration, list):
if narration_selection == 'random':
narration = random.choice(narration)
elif narration_selection == 'concat':
narration = '. '.join(narration)
elif narration_selection == 'list':
narration = narration
else:
raise ValueError
return frames, narration
elif len(self.samples[i]) == 5:
# TODO: need better filtering strategy based on nll
vid, start_second, end_second, narration, _ = self.samples[i]
frames = video_loader(self.root, vid, start_second,
end_second=end_second,
clip_length=clip_length,
jitter=is_training)
if isinstance(narration, list):
if narration_selection == 'random':
narration = random.choice(narration)
elif narration_selection == 'concat':
narration = '. '.join(narration)
elif narration_selection == 'list':
narration = narration
else:
raise ValueError
return frames, narration
elif self.dataset == 'ego4d_mcq':
itemMCQ = self.samples[str(i)]
answerIndex = itemMCQ['answer']
textQuery = itemMCQ['query']['clip_text']
sampleOptions = itemMCQ['choices']
frames_options = []
narration_options = []
for option_id in range(len(sampleOptions)):
option = sampleOptions[str(option_id)]
frames = video_loader(self.root, option['video_uid'],
float(option['clip_start']), end_second=float(option['clip_end']),
clip_length=clip_length,
jitter=is_training)
frames_options.append(frames)
narration_options.append(option['clip_text'])
return textQuery, frames_options, narration_options, answerIndex, itemMCQ['types']
elif self.dataset == 'ek100_mir':
vid_path, start_frame, end_frame, narration, verb, noun = self.samples[i]
# from third_party.EgoVLP.base.base_dataset import sample_frames_start_end
# frame_ids = sample_frames_start_end(clip_length, start_frame, end_frame, sample='uniform', fix_start=None)
frame_ids = get_frame_ids(start_frame, end_frame, num_segments=clip_length, jitter=is_training)
frames = video_loader_by_frames(self.root, vid_path, frame_ids)
if is_training:
positive_list = np.where(self.relevancy_mat[i] > self.relevancy)[0].tolist()
if positive_list != []:
pos = random.sample(positive_list, min(len(positive_list), 1))[0]
if pos < len(self.metadata_sentence) and pos < self.relevancy_mat.shape[1]:
return frames, (self.metadata_sentence.iloc[pos][1], self.relevancy_mat[i][pos])
else:
return frames, (narration, 1)
elif self.dataset == 'ek100_cls':
vid_path, start_frame, end_frame, narration, verb, noun = self.samples[i]
frame_ids = get_frame_ids(start_frame, end_frame, num_segments=clip_length, jitter=is_training)
frames = video_loader_by_frames(self.root, vid_path, frame_ids)
return frames, '{}:{}'.format(verb, noun)
elif self.dataset == 'egtea':
vid_path, start_frame, end_frame, sentence = self.samples[i]
if is_training:
assert num_clips == 1
if end_frame < clip_length * clip_stride:
frames = video_loader_by_frames(self.root, vid_path, list(np.arange(0, end_frame)))
zeros = torch.zeros((clip_length * clip_stride - end_frame, *frames.shape[1:]))
frames = torch.cat((frames, zeros), dim=0)
frames = frames[::clip_stride]
else:
start_id = np.random.randint(0, end_frame - clip_length * clip_stride + 1)
frame_ids = np.arange(start_id, start_id + clip_length * clip_stride, clip_stride)
frames = video_loader_by_frames(self.root, vid_path, frame_ids)
else:
if end_frame < clip_length * clip_stride:
frames = video_loader_by_frames(self.root, vid_path, list(np.arange(0, end_frame)))
zeros = torch.zeros((clip_length * clip_stride - end_frame, *frames.shape[1:]))
frames = torch.cat((frames, zeros), dim=0)
frames = frames[::clip_stride]
frames = frames.repeat(num_clips, 1, 1, 1)
else:
frame_ids = []
for start_id in np.linspace(0, end_frame - clip_length * clip_stride, num_clips, dtype=int):
frame_ids.extend(np.arange(start_id, start_id + clip_length * clip_stride, clip_stride))
frames = video_loader_by_frames(self.root, vid_path, frame_ids)
return frames, sentence
elif self.dataset == 'charades_ego':
vid_path, start_frame, end_frame, action_list = self.samples[i]
if sparse_sample:
frame_ids = get_frame_ids(start_frame, end_frame, num_segments=num_clips * clip_length, jitter=is_training)
frames = video_loader_by_frames(self.root, vid_path, frame_ids)
else:
if end_frame < clip_length * clip_stride:
frames = video_loader_by_frames(self.root, vid_path, list(np.arange(0, end_frame)))
zeros = torch.zeros((clip_length * clip_stride - end_frame, *frames.shape[1:]))
frames = torch.cat((frames, zeros), dim=0)
frames = frames[::clip_stride]
frames = frames.repeat(num_clips, 1, 1, 1)
else:
frame_ids = []
for start_id in np.linspace(0, end_frame - clip_length * clip_stride, num_clips, dtype=int):
frame_ids.extend(np.arange(start_id, start_id + clip_length * clip_stride, clip_stride))
#print('frame_ids:', frame_ids)
frames = video_loader_by_frames(self.root, vid_path, frame_ids)
return frames, action_list, vid_path
elif self.dataset == 'charades_ego_trimmed':
vid, start_second, end_second, narration = self.samples[i]
frames = video_loader(self.root, vid, start_second,
end_second=end_second,
chunk_len=-1, # no chunk for CharadesEgo
fps=-1, # could be variable fps
clip_length=clip_length,
jitter=is_training)
return frames, narration
else:
raise NotImplementedError
def __getitem__(self, i):
raise NotImplementedError
def __len__(self):
return len(self.samples)
class VideoCaptionDatasetCLIP(VideoCaptionDatasetBase):
def __init__(self, dataset, root, metadata, transform=None,
is_training=True, tokenizer=None,
clip_length=32, clip_stride=2, sparse_sample=False,
narration_selection='random',
num_hard_negatives=0,
subsample_stride=None):
super().__init__(dataset, root, metadata)
self.full_samples = self.samples.copy()
if isinstance(subsample_stride, int):
self.samples = self.samples[::subsample_stride]
self.transform = transform
self.is_training = is_training
self.tokenizer = tokenizer
self.clip_length = clip_length
self.clip_stride = clip_stride
self.sparse_sample = sparse_sample
self.narration_selection = narration_selection
self.num_hard_negatives = num_hard_negatives
if num_hard_negatives > 0:
assert self.dataset == 'htm_aa'
def __getitem__(self, i):
frames, caption = self.get_raw_item(
i, is_training=self.is_training,
clip_length=self.clip_length,
clip_stride=self.clip_stride,
sparse_sample=self.sparse_sample,
narration_selection=self.narration_selection,
)
# ek100_mir will also output relevancy value
if isinstance(caption, tuple):
caption, relevancy = caption
else:
relevancy = 0.
# apply transformation
if self.transform is not None:
frames = self.transform(frames)
# tokenize caption
if self.tokenizer is not None:
caption = self.tokenizer(caption)
if isinstance(caption, tuple):
caption, mask = caption
return frames, caption, mask, relevancy
else:
return frames, caption, relevancy
class VideoCaptionDatasetMCQ(VideoCaptionDatasetBase):
def __init__(self, dataset, root, metadata, transform=None,
is_training=True, tokenizer=None,
clip_length=32, clip_stride=2, sparse_sample=False,
narration_selection='random'):
super().__init__(dataset, root, metadata)
self.full_samples = self.samples.copy()
self.transform = transform
self.is_training = is_training
self.tokenizer = tokenizer
self.clip_length = clip_length
self.clip_stride = clip_stride
self.sparse_sample = sparse_sample
self.narration_selection = narration_selection
def __getitem__(self, i):
textQuery, frames_options, narration_options, answerIndex, q_type = self.get_raw_item(
i, is_training=self.is_training,
clip_length=self.clip_length,
clip_stride=self.clip_stride,
sparse_sample=self.sparse_sample,
narration_selection=self.narration_selection,
)
# apply transformation
if self.transform is not None:
frames_options = [self.transform(frames) for frames in frames_options]
# tokenize caption
if self.tokenizer is not None:
textQuery = self.tokenizer(textQuery)
narration_options = self.tokenizer(narration_options)
if isinstance(textQuery, tuple):
textQuery, mask_query = textQuery
narration_options, mask_options = narration_options
return (
textQuery, torch.stack(frames_options, dim=0),
narration_options, answerIndex, q_type,
mask_query, mask_options
)
else:
return textQuery, torch.stack(frames_options, dim=0), narration_options, answerIndex, q_type
class VideoClassyDataset(VideoCaptionDatasetBase):
def __init__(
self, dataset, root, metadata, transform=None,
is_training=True, label_mapping=None,
num_clips=1,
clip_length=32, clip_stride=2,
sparse_sample=False,
is_trimmed=True,
):
super().__init__(dataset, root, metadata, is_trimmed=is_trimmed)
self.transform = transform
self.is_training = is_training
self.label_mapping = label_mapping
self.num_clips = num_clips
self.clip_length = clip_length
self.clip_stride = clip_stride
self.sparse_sample = sparse_sample
def __getitem__(self, i):
frames, label, vid_path = self.get_raw_item(
i, is_training=self.is_training,
num_clips=self.num_clips,
clip_length=self.clip_length,
clip_stride=self.clip_stride,
sparse_sample=self.sparse_sample,
)
# apply transformation
if self.transform is not None:
frames = self.transform(frames)
if self.label_mapping is not None:
if isinstance(label, list):
# multi-label case
res_array = np.zeros(len(self.label_mapping))
for lbl in label:
res_array[self.label_mapping[lbl]] = 1.
label = res_array
else:
label = self.label_mapping[label]
return frames, label, vid_path
def get_dataset(train_transform, tokenizer, cfg, is_training=True):
narration_selection = cfg.get('narration_selection', 'random')
num_hard_neg = cfg.get('num_hard_neg', 0)
data_cfg = cfg['data']
if cfg['model']['arch'].startswith('CLIP') or cfg['model']['arch'].startswith('VCLM'):
if is_training:
metadata = data_cfg['metadata']
else:
metadata = data_cfg['metadata_val']
return VideoCaptionDatasetCLIP(
data_cfg['dataset'], data_cfg['root'], metadata, train_transform,
is_training=is_training,
tokenizer=tokenizer,
clip_length=data_cfg['clip_length'], clip_stride=data_cfg['clip_stride'],
sparse_sample=data_cfg['sparse_sample'],
narration_selection=narration_selection,
num_hard_negatives=num_hard_neg
)
else:
raise NotImplementedError
def get_downstream_dataset(transform, tokenizer, cfg, is_training=True, num_clips=0, label_mapping=None):
data_cfg = cfg['data']
n_clips = num_clips if num_clips > 0 else data_cfg['num_clips']
if is_training:
metadata = data_cfg['metadata']
return VideoClassyDataset(
data_cfg['dataset'], data_cfg['root'], metadata, transform,
is_training=True, label_mapping=label_mapping,
num_clips=n_clips,
clip_length=data_cfg['clip_length'], clip_stride=data_cfg['clip_stride'],
sparse_sample=data_cfg['sparse_sample'],
)
else:
metadata = data_cfg['metadata_val']
return VideoClassyDataset(
data_cfg['dataset'], data_cfg['root'], metadata, transform,
is_training=False, label_mapping=label_mapping,
num_clips=n_clips,
clip_length=data_cfg['clip_length'], clip_stride=data_cfg['clip_stride'],
sparse_sample=data_cfg['sparse_sample'],
is_trimmed=not data_cfg['dataset'] == 'charades_ego'
)