Spaces:
Running
on
Zero
Running
on
Zero
update MobileSAM
Browse files- app.py +167 -1
- requirements.txt +1 -0
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
from typing import Optional, Tuple
|
2 |
from einops import rearrange
|
3 |
import torch
|
|
|
4 |
from PIL import Image
|
5 |
import torchvision.transforms as transforms
|
6 |
from torch import nn
|
@@ -12,8 +13,168 @@ import gradio as gr
|
|
12 |
|
13 |
use_cuda = torch.cuda.is_available()
|
14 |
|
|
|
|
|
15 |
print("CUDA is available:", use_cuda)
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
class SAM(torch.nn.Module):
|
19 |
def __init__(self, checkpoint="/data/sam_model/sam_vit_b_01ec64.pth", **kwargs):
|
@@ -307,6 +468,8 @@ def image_clip_feature(
|
|
307 |
def extract_features(images, model_name="sam", node_type="block", layer=-1):
|
308 |
if model_name == "SAM(sam_vit_b)":
|
309 |
return image_sam_feature(images, node_type=node_type, layer=layer)
|
|
|
|
|
310 |
elif model_name == "DiNO(dinov2_vitb14_reg)":
|
311 |
return image_dino_feature(images, node_type=node_type, layer=layer)
|
312 |
elif model_name == "CLIP(openai/clip-vit-base-patch16)":
|
@@ -346,6 +509,9 @@ def compute_ncut(
|
|
346 |
)
|
347 |
print(f"t-SNE time: {time.time() - start:.2f}s")
|
348 |
|
|
|
|
|
|
|
349 |
rgb = rgb.reshape(features.shape[:3] + (3,))
|
350 |
return rgb
|
351 |
|
@@ -413,7 +579,7 @@ demo = gr.Interface(
|
|
413 |
main_fn,
|
414 |
[
|
415 |
gr.Gallery(value=default_images, label="Select images", show_label=False, elem_id="images", columns=[3], rows=[1], object_fit="contain", height="auto", type="pil"),
|
416 |
-
gr.Dropdown(["SAM(sam_vit_b)", "DiNO(dinov2_vitb14_reg)", "CLIP(openai/clip-vit-base-patch16)"], label="Model", value="
|
417 |
gr.Dropdown(["attn", "mlp", "block"], label="Node type", value="block", elem_id="node_type", info="attn: attention output, mlp: mlp output, block: sum of residual stream"),
|
418 |
gr.Slider(0, 11, step=1, label="Layer", value=11, elem_id="layer", info="which layer of the image backbone features"),
|
419 |
gr.Slider(1, 1000, step=1, label="Number of eigenvectors", value=100, elem_id="num_eig", info='increase for more object parts, decrease for whole object'),
|
|
|
1 |
from typing import Optional, Tuple
|
2 |
from einops import rearrange
|
3 |
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
from PIL import Image
|
6 |
import torchvision.transforms as transforms
|
7 |
from torch import nn
|
|
|
13 |
|
14 |
use_cuda = torch.cuda.is_available()
|
15 |
|
16 |
+
# use_cuda = False
|
17 |
+
|
18 |
print("CUDA is available:", use_cuda)
|
19 |
|
20 |
+
class MobileSAM(nn.Module):
|
21 |
+
def __init__(self, **kwargs):
|
22 |
+
super().__init__(**kwargs)
|
23 |
+
|
24 |
+
from mobile_sam import sam_model_registry
|
25 |
+
|
26 |
+
url = 'https://raw.githubusercontent.com/ChaoningZhang/MobileSAM/master/weights/mobile_sam.pt'
|
27 |
+
model_type = "vit_t"
|
28 |
+
sam_checkpoint = "mobile_sam.pt"
|
29 |
+
if not os.path.exists(sam_checkpoint):
|
30 |
+
import requests
|
31 |
+
r = requests.get(url)
|
32 |
+
with open(sam_checkpoint, 'wb') as f:
|
33 |
+
f.write(r.content)
|
34 |
+
|
35 |
+
device = 'cuda' if use_cuda else 'cpu'
|
36 |
+
|
37 |
+
mobile_sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
|
38 |
+
|
39 |
+
def new_forward_fn(self, x):
|
40 |
+
shortcut = x
|
41 |
+
|
42 |
+
x = self.conv1(x)
|
43 |
+
x = self.act1(x)
|
44 |
+
|
45 |
+
x = self.conv2(x)
|
46 |
+
x = self.act2(x)
|
47 |
+
|
48 |
+
self.attn_output = rearrange(x.clone(), "b c h w -> b h w c")
|
49 |
+
|
50 |
+
x = self.conv3(x)
|
51 |
+
|
52 |
+
self.mlp_output = rearrange(x.clone(), "b c h w -> b h w c")
|
53 |
+
|
54 |
+
x = self.drop_path(x)
|
55 |
+
|
56 |
+
x += shortcut
|
57 |
+
x = self.act3(x)
|
58 |
+
|
59 |
+
self.block_output = rearrange(x.clone(), "b c h w -> b h w c")
|
60 |
+
|
61 |
+
return x
|
62 |
+
|
63 |
+
setattr(mobile_sam.image_encoder.layers[0].blocks[0].__class__, "forward", new_forward_fn)
|
64 |
+
|
65 |
+
def new_forward_fn2(self, x):
|
66 |
+
H, W = self.input_resolution
|
67 |
+
B, L, C = x.shape
|
68 |
+
assert L == H * W, "input feature has wrong size"
|
69 |
+
res_x = x
|
70 |
+
if H == self.window_size and W == self.window_size:
|
71 |
+
x = self.attn(x)
|
72 |
+
else:
|
73 |
+
x = x.view(B, H, W, C)
|
74 |
+
pad_b = (self.window_size - H %
|
75 |
+
self.window_size) % self.window_size
|
76 |
+
pad_r = (self.window_size - W %
|
77 |
+
self.window_size) % self.window_size
|
78 |
+
padding = pad_b > 0 or pad_r > 0
|
79 |
+
|
80 |
+
if padding:
|
81 |
+
x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b))
|
82 |
+
|
83 |
+
pH, pW = H + pad_b, W + pad_r
|
84 |
+
nH = pH // self.window_size
|
85 |
+
nW = pW // self.window_size
|
86 |
+
# window partition
|
87 |
+
x = x.view(B, nH, self.window_size, nW, self.window_size, C).transpose(2, 3).reshape(
|
88 |
+
B * nH * nW, self.window_size * self.window_size, C)
|
89 |
+
x = self.attn(x)
|
90 |
+
# window reverse
|
91 |
+
x = x.view(B, nH, nW, self.window_size, self.window_size,
|
92 |
+
C).transpose(2, 3).reshape(B, pH, pW, C)
|
93 |
+
|
94 |
+
if padding:
|
95 |
+
x = x[:, :H, :W].contiguous()
|
96 |
+
|
97 |
+
x = x.view(B, L, C)
|
98 |
+
|
99 |
+
hw = np.sqrt(x.shape[1]).astype(int)
|
100 |
+
self.attn_output = rearrange(x.clone(), "b (h w) c -> b h w c", h=hw)
|
101 |
+
|
102 |
+
x = res_x + self.drop_path(x)
|
103 |
+
|
104 |
+
x = x.transpose(1, 2).reshape(B, C, H, W)
|
105 |
+
x = self.local_conv(x)
|
106 |
+
x = x.view(B, C, L).transpose(1, 2)
|
107 |
+
|
108 |
+
mlp_output = self.mlp(x)
|
109 |
+
self.mlp_output = rearrange(mlp_output.clone(), "b (h w) c -> b h w c", h=hw)
|
110 |
+
|
111 |
+
x = x + self.drop_path(mlp_output)
|
112 |
+
self.block_output = rearrange(x.clone(), "b (h w) c -> b h w c", h=hw)
|
113 |
+
return x
|
114 |
+
|
115 |
+
setattr(mobile_sam.image_encoder.layers[1].blocks[0].__class__, "forward", new_forward_fn2)
|
116 |
+
|
117 |
+
|
118 |
+
mobile_sam.to(device=device)
|
119 |
+
mobile_sam.eval()
|
120 |
+
self.image_encoder = mobile_sam.image_encoder
|
121 |
+
|
122 |
+
|
123 |
+
@torch.no_grad()
|
124 |
+
def forward(self, x):
|
125 |
+
with torch.no_grad():
|
126 |
+
x = torch.nn.functional.interpolate(x, size=(1024, 1024), mode="bilinear")
|
127 |
+
out = self.image_encoder(x)
|
128 |
+
|
129 |
+
attn_outputs, mlp_outputs, block_outputs = [], [], []
|
130 |
+
for i_layer in range(len(self.image_encoder.layers)):
|
131 |
+
for i_block in range(len(self.image_encoder.layers[i_layer].blocks)):
|
132 |
+
blk = self.image_encoder.layers[i_layer].blocks[i_block]
|
133 |
+
attn_outputs.append(blk.attn_output)
|
134 |
+
mlp_outputs.append(blk.mlp_output)
|
135 |
+
block_outputs.append(blk.block_output)
|
136 |
+
return attn_outputs, mlp_outputs, block_outputs
|
137 |
+
|
138 |
+
|
139 |
+
def image_mobilesam_feature(
|
140 |
+
images,
|
141 |
+
resolution=(1024, 1024),
|
142 |
+
node_type="block",
|
143 |
+
layer=-1,
|
144 |
+
):
|
145 |
+
|
146 |
+
transform = transforms.Compose(
|
147 |
+
[
|
148 |
+
transforms.Resize(resolution),
|
149 |
+
transforms.ToTensor(),
|
150 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
151 |
+
]
|
152 |
+
)
|
153 |
+
|
154 |
+
|
155 |
+
feat_extractor = MobileSAM()
|
156 |
+
|
157 |
+
# attn_outputs, mlp_outputs, block_outputs = [], [], []
|
158 |
+
outputs = []
|
159 |
+
for i, image in enumerate(images):
|
160 |
+
torch_image = transform(image)
|
161 |
+
if use_cuda:
|
162 |
+
torch_image = torch_image.cuda()
|
163 |
+
attn_output, mlp_output, block_output = feat_extractor(
|
164 |
+
torch_image.unsqueeze(0)
|
165 |
+
)
|
166 |
+
out_dict = {
|
167 |
+
"attn": attn_output,
|
168 |
+
"mlp": mlp_output,
|
169 |
+
"block": block_output,
|
170 |
+
}
|
171 |
+
out = out_dict[node_type]
|
172 |
+
out = out[layer]
|
173 |
+
outputs.append(out.cpu())
|
174 |
+
outputs = torch.cat(outputs, dim=0)
|
175 |
+
return outputs
|
176 |
+
|
177 |
+
|
178 |
|
179 |
class SAM(torch.nn.Module):
|
180 |
def __init__(self, checkpoint="/data/sam_model/sam_vit_b_01ec64.pth", **kwargs):
|
|
|
468 |
def extract_features(images, model_name="sam", node_type="block", layer=-1):
|
469 |
if model_name == "SAM(sam_vit_b)":
|
470 |
return image_sam_feature(images, node_type=node_type, layer=layer)
|
471 |
+
elif model_name == 'MobileSAM':
|
472 |
+
return image_mobilesam_feature(images, node_type=node_type, layer=layer)
|
473 |
elif model_name == "DiNO(dinov2_vitb14_reg)":
|
474 |
return image_dino_feature(images, node_type=node_type, layer=layer)
|
475 |
elif model_name == "CLIP(openai/clip-vit-base-patch16)":
|
|
|
509 |
)
|
510 |
print(f"t-SNE time: {time.time() - start:.2f}s")
|
511 |
|
512 |
+
# print("input shape:", features.shape)
|
513 |
+
# print("output shape:", rgb.shape)
|
514 |
+
|
515 |
rgb = rgb.reshape(features.shape[:3] + (3,))
|
516 |
return rgb
|
517 |
|
|
|
579 |
main_fn,
|
580 |
[
|
581 |
gr.Gallery(value=default_images, label="Select images", show_label=False, elem_id="images", columns=[3], rows=[1], object_fit="contain", height="auto", type="pil"),
|
582 |
+
gr.Dropdown(["MobileSAM", "SAM(sam_vit_b)", "DiNO(dinov2_vitb14_reg)", "CLIP(openai/clip-vit-base-patch16)"], label="Model", value="MobileSAM", elem_id="model_name"),
|
583 |
gr.Dropdown(["attn", "mlp", "block"], label="Node type", value="block", elem_id="node_type", info="attn: attention output, mlp: mlp output, block: sum of residual stream"),
|
584 |
gr.Slider(0, 11, step=1, label="Layer", value=11, elem_id="layer", info="which layer of the image backbone features"),
|
585 |
gr.Slider(1, 1000, step=1, label="Number of eigenvectors", value=100, elem_id="num_eig", info='increase for more object parts, decrease for whole object'),
|
requirements.txt
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
ncut-pytorch
|
2 |
transformers
|
3 |
segment-anything @ git+https://github.com/facebookresearch/segment-anything.git
|
|
|
4 |
--extra-index-url https://download.pytorch.org/whl/cpu
|
5 |
torch
|
6 |
torchvision
|
|
|
1 |
ncut-pytorch
|
2 |
transformers
|
3 |
segment-anything @ git+https://github.com/facebookresearch/segment-anything.git
|
4 |
+
mobile-sam @ git+https://github.com/ChaoningZhang/MobileSAM.git
|
5 |
--extra-index-url https://download.pytorch.org/whl/cpu
|
6 |
torch
|
7 |
torchvision
|