|
import gradio as gr |
|
import requests |
|
import pandas as pd |
|
|
|
def api_url(remote): |
|
return f"https://huynhdoo--mps-api-{remote}.modal.run" |
|
|
|
origins = { |
|
'Formation' : ['formation.presentation', 'formation.summary'], |
|
'Métier' : ['metier.presentation', 'metier.competences', |
|
'metier.condition_travail', 'metier.nature_travail', |
|
'metier.acces_metier', 'metier.vie_professionnelle', |
|
'metier.accroche_metier', 'metier.format_court1', |
|
'metier.format_court2'] |
|
} |
|
|
|
def retrieve(query='cuisine', origin='Formation', n_results=10): |
|
queries = query.split(',') |
|
|
|
|
|
json = dict( |
|
query=queries, |
|
origins=origins[origin], |
|
n_results=n_results |
|
) |
|
|
|
try: |
|
resp = requests.post(url=api_url('retrieve'), json=json) |
|
data = resp.json() |
|
except: |
|
return pd.DataFrame([]) |
|
|
|
|
|
queries = [pd.DataFrame({'query': [queries[i]]*len(data['distances'][i])}) for i in range(len(queries))] |
|
distances = [pd.DataFrame({'distance': distances}) for distances in data['distances']] |
|
metadatas = [pd.DataFrame(metadatas) for metadatas in data['metadatas']] |
|
documents = [pd.DataFrame({'document': documents}) for documents in data['documents']] |
|
|
|
|
|
dfs = [pd.concat([query, dis, metas, docs], axis=1) for query, dis, metas, docs in zip(queries, distances, metadatas, documents)] |
|
|
|
for idx in range(len(dfs)): |
|
dfs[idx]['distance'] = dfs[idx]['distance'].apply(lambda x: round(x, 3)) |
|
dfs[idx]['origin'] = dfs[idx]['origin'].apply(lambda x: x.split('.')[1]) |
|
|
|
df = pd.concat(dfs) |
|
return df |
|
|
|
def rank(query='cuisine', documents = []): |
|
|
|
json = dict( |
|
query=query, |
|
documents=documents |
|
) |
|
|
|
try: |
|
resp = requests.post(url=api_url('rank'), json=json) |
|
data = resp.json() |
|
except: |
|
return [] |
|
|
|
|
|
return data['ranking'] |
|
|
|
gradio_app = gr.Interface( |
|
fn=retrieve, |
|
inputs=[ |
|
gr.Textbox(label="Recherche", info="Votre recherche (mots séparés par des virgules pour des recherches multiples)"), |
|
gr.Dropdown(choices=list(origins.keys()), value=list(origins.keys())[0], label="Origine", info="Choisir un type de donnée à interroger"), |
|
gr.Number(value=10, label="Nombre de résultats", info="Nombre de résultats attendus") |
|
], |
|
outputs=[ |
|
gr.DataFrame(label="Résultats", headers=["Query", "Distance", "Key", "Label", "Origin", "Document"]) |
|
], |
|
examples=[['militaire', 'Formation'], |
|
['cuisine', 'Métier'], |
|
['écologie', 'Formation'], |
|
['eau', 'Métier'], |
|
['math', 'Formation'], |
|
['math, histoire, math histoire', 'Formation'] |
|
], |
|
cache_examples=False |
|
) |
|
|
|
if __name__ == "__main__": |
|
gradio_app.launch(auth=("mps", "sup"), share=True) |
|
|