Spaces:
Paused
Paused
Commit
·
ab83281
1
Parent(s):
0c4a8eb
chatbot updated
Browse files- chatbot/chatbot.py +205 -151
chatbot/chatbot.py
CHANGED
@@ -1,15 +1,15 @@
|
|
1 |
# codingo/chatbot/chatbot.py
|
2 |
-
"""Chatbot module for Codingo
|
3 |
-
|
4 |
-
Default model changed to blenderbot-400M-distill; generation uses max_new_tokens; fallback between causal and seq2seq models."""
|
5 |
|
6 |
import os
|
7 |
import shutil
|
8 |
from typing import List
|
|
|
9 |
|
10 |
os.environ.setdefault("HF_HOME", "/tmp/huggingface")
|
11 |
os.environ.setdefault("TRANSFORMERS_CACHE", "/tmp/huggingface/transformers")
|
12 |
os.environ.setdefault("HUGGINGFACE_HUB_CACHE", "/tmp/huggingface/hub")
|
|
|
13 |
|
14 |
_hf_model = None
|
15 |
_hf_tokenizer = None
|
@@ -20,7 +20,8 @@ _current_dir = os.path.dirname(os.path.abspath(__file__))
|
|
20 |
_knowledge_base_path = os.path.join(_current_dir, "chatbot.txt")
|
21 |
_chroma_db_dir = "/tmp/chroma_db"
|
22 |
|
23 |
-
|
|
|
24 |
|
25 |
def _init_hf_model() -> None:
|
26 |
from transformers import (
|
@@ -34,206 +35,259 @@ def _init_hf_model() -> None:
|
|
34 |
if _hf_model is not None and _hf_tokenizer is not None:
|
35 |
return
|
36 |
|
|
|
37 |
model_name = os.getenv("HF_CHATBOT_MODEL", DEFAULT_MODEL_NAME)
|
38 |
-
|
39 |
|
40 |
-
|
41 |
-
|
42 |
|
43 |
-
# Try loading the model with proper error handling
|
44 |
try:
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
48 |
try:
|
49 |
-
model =
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
51 |
except Exception as e:
|
52 |
-
print(f"
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
tokenizer.pad_token = tokenizer.eos_token
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
72 |
|
73 |
def _init_vector_store() -> None:
|
74 |
global _chatbot_embedder, _chatbot_collection
|
75 |
if _chatbot_embedder is not None and _chatbot_collection is not None:
|
76 |
return
|
77 |
|
78 |
-
|
79 |
-
from sentence_transformers import SentenceTransformer
|
80 |
-
import chromadb
|
81 |
-
from chromadb.config import Settings
|
82 |
-
|
83 |
-
# Clean up old database
|
84 |
-
shutil.rmtree(_chroma_db_dir, ignore_errors=True)
|
85 |
-
os.makedirs(_chroma_db_dir, exist_ok=True)
|
86 |
|
87 |
try:
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
))
|
111 |
-
|
112 |
-
# Create or recreate collection
|
113 |
-
try:
|
114 |
-
client.delete_collection("chatbot")
|
115 |
-
except:
|
116 |
-
pass
|
117 |
-
|
118 |
-
collection = client.create_collection("chatbot")
|
119 |
-
|
120 |
-
# Add documents
|
121 |
-
ids = [f"doc_{i}" for i in range(len(docs))]
|
122 |
-
collection.add(documents=docs, embeddings=embeddings.tolist(), ids=ids)
|
123 |
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
def get_chatbot_response(query: str) -> str:
|
128 |
try:
|
|
|
|
|
129 |
if not query or not query.strip():
|
130 |
return "Please type a question about the Codingo platform."
|
131 |
|
132 |
-
# Clear GPU cache
|
133 |
import torch
|
134 |
if torch.cuda.is_available():
|
135 |
torch.cuda.empty_cache()
|
|
|
136 |
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
embedder = _chatbot_embedder
|
141 |
collection = _chatbot_collection
|
142 |
model = _hf_model
|
143 |
tokenizer = _hf_tokenizer
|
144 |
|
145 |
-
import torch
|
146 |
-
|
147 |
# Get relevant documents
|
|
|
148 |
query_embedding = embedder.encode([query])[0]
|
|
|
|
|
149 |
results = collection.query(query_embeddings=[query_embedding.tolist()], n_results=3)
|
150 |
retrieved_docs = results.get("documents", [[]])[0] if results else []
|
151 |
-
context = "\n".join(retrieved_docs[:3])
|
152 |
-
|
153 |
-
|
|
|
154 |
if hasattr(model, 'model_type') and model.model_type == "seq2seq":
|
155 |
-
# For seq2seq models like BlenderBot
|
156 |
prompt = f"Context: {context}\n\nUser: {query}\nAssistant:"
|
157 |
else:
|
158 |
-
# For causal models
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
)
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
max_length=512,
|
173 |
-
padding=True,
|
174 |
-
return_attention_mask=True
|
175 |
-
)
|
176 |
-
|
177 |
-
# Move all tensors to the same device
|
178 |
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
179 |
-
|
180 |
-
# Generate response
|
|
|
181 |
with torch.no_grad():
|
182 |
try:
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
|
|
|
|
|
|
|
|
199 |
output_ids = model.generate(
|
200 |
input_ids=inputs['input_ids'],
|
201 |
-
|
202 |
-
max_new_tokens=150,
|
203 |
-
num_beams=3,
|
204 |
-
do_sample=True,
|
205 |
-
temperature=0.7,
|
206 |
pad_token_id=tokenizer.pad_token_id,
|
207 |
-
eos_token_id=tokenizer.eos_token_id,
|
208 |
)
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
return "I'm here to help you with questions about the Codingo platform. Could you please rephrase your question?"
|
213 |
|
214 |
-
# Decode
|
|
|
215 |
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
|
|
216 |
|
217 |
-
# Clean up
|
218 |
-
if "
|
219 |
-
response = response.split("Assistant:")[-1].strip()
|
220 |
-
elif "LUNA AI:" in response:
|
221 |
response = response.split("LUNA AI:")[-1].strip()
|
222 |
-
elif
|
223 |
-
response = response.
|
224 |
|
225 |
-
# Remove the input
|
226 |
if query in response:
|
227 |
-
response = response.
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
|
|
|
|
|
|
234 |
|
235 |
except Exception as e:
|
236 |
-
print(f"
|
237 |
-
import traceback
|
238 |
traceback.print_exc()
|
239 |
-
return "I apologize, but I
|
|
|
1 |
# codingo/chatbot/chatbot.py
|
2 |
+
"""Chatbot module for Codingo with enhanced debugging"""
|
|
|
|
|
3 |
|
4 |
import os
|
5 |
import shutil
|
6 |
from typing import List
|
7 |
+
import traceback
|
8 |
|
9 |
os.environ.setdefault("HF_HOME", "/tmp/huggingface")
|
10 |
os.environ.setdefault("TRANSFORMERS_CACHE", "/tmp/huggingface/transformers")
|
11 |
os.environ.setdefault("HUGGINGFACE_HUB_CACHE", "/tmp/huggingface/hub")
|
12 |
+
os.environ["CUDA_LAUNCH_BLOCKING"] = "1" # Enable synchronous CUDA errors
|
13 |
|
14 |
_hf_model = None
|
15 |
_hf_tokenizer = None
|
|
|
20 |
_knowledge_base_path = os.path.join(_current_dir, "chatbot.txt")
|
21 |
_chroma_db_dir = "/tmp/chroma_db"
|
22 |
|
23 |
+
# Try a smaller, more reliable model for debugging
|
24 |
+
DEFAULT_MODEL_NAME = "microsoft/DialoGPT-small"
|
25 |
|
26 |
def _init_hf_model() -> None:
|
27 |
from transformers import (
|
|
|
35 |
if _hf_model is not None and _hf_tokenizer is not None:
|
36 |
return
|
37 |
|
38 |
+
print("Initializing HF model...")
|
39 |
model_name = os.getenv("HF_CHATBOT_MODEL", DEFAULT_MODEL_NAME)
|
40 |
+
print(f"Loading model: {model_name}")
|
41 |
|
42 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
43 |
+
print(f"Using device: {device}")
|
44 |
|
|
|
45 |
try:
|
46 |
+
# Initialize tokenizer
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
48 |
+
print("Tokenizer loaded successfully")
|
49 |
+
|
50 |
+
# Try loading the model
|
51 |
try:
|
52 |
+
model = AutoModelForCausalLM.from_pretrained(
|
53 |
+
model_name,
|
54 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
55 |
+
low_cpu_mem_usage=True
|
56 |
+
)
|
57 |
+
model_type = "causal"
|
58 |
+
print("Loaded as causal model")
|
59 |
except Exception as e:
|
60 |
+
print(f"Failed to load as causal model: {e}")
|
61 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
62 |
+
model_name,
|
63 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
64 |
+
low_cpu_mem_usage=True
|
65 |
+
)
|
66 |
+
model_type = "seq2seq"
|
67 |
+
print("Loaded as seq2seq model")
|
68 |
+
|
69 |
+
# Move model to device
|
70 |
+
model = model.to(device)
|
71 |
+
model.eval()
|
72 |
+
print("Model moved to device and set to eval mode")
|
73 |
+
|
74 |
+
# Configure padding token
|
75 |
+
if tokenizer.pad_token is None:
|
76 |
tokenizer.pad_token = tokenizer.eos_token
|
77 |
+
print(f"Set pad_token to: {tokenizer.pad_token}")
|
78 |
+
|
79 |
+
# Store model type
|
80 |
+
model.model_type = model_type
|
81 |
+
|
82 |
+
_hf_model = model
|
83 |
+
_hf_tokenizer = tokenizer
|
84 |
+
print("Model initialization complete")
|
85 |
+
|
86 |
+
except Exception as e:
|
87 |
+
print(f"Error during model initialization: {e}")
|
88 |
+
traceback.print_exc()
|
89 |
+
raise
|
90 |
|
91 |
def _init_vector_store() -> None:
|
92 |
global _chatbot_embedder, _chatbot_collection
|
93 |
if _chatbot_embedder is not None and _chatbot_collection is not None:
|
94 |
return
|
95 |
|
96 |
+
print("Initializing vector store...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
try:
|
99 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
100 |
+
from sentence_transformers import SentenceTransformer
|
101 |
+
import chromadb
|
102 |
+
from chromadb.config import Settings
|
103 |
+
|
104 |
+
# Clean up old database
|
105 |
+
shutil.rmtree(_chroma_db_dir, ignore_errors=True)
|
106 |
+
os.makedirs(_chroma_db_dir, exist_ok=True)
|
107 |
+
|
108 |
+
# Load knowledge base
|
109 |
+
try:
|
110 |
+
with open(_knowledge_base_path, encoding="utf-8") as f:
|
111 |
+
raw_text = f.read()
|
112 |
+
print(f"Loaded knowledge base with {len(raw_text)} characters")
|
113 |
+
except FileNotFoundError:
|
114 |
+
print("Knowledge base file not found, using default text")
|
115 |
+
raw_text = (
|
116 |
+
"Codingo is an AI-powered recruitment platform designed to "
|
117 |
+
"streamline job applications, candidate screening, and hiring. "
|
118 |
+
"We make hiring smarter, faster, and fairer through automation "
|
119 |
+
"and intelligent recommendations."
|
120 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
+
# Split text
|
123 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=100)
|
124 |
+
docs = [doc.strip() for doc in splitter.split_text(raw_text) if doc.strip()]
|
125 |
+
print(f"Split into {len(docs)} documents")
|
126 |
+
|
127 |
+
# Initialize embedder
|
128 |
+
print("Loading sentence transformer...")
|
129 |
+
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
130 |
+
print("Encoding documents...")
|
131 |
+
embeddings = embedder.encode(docs, show_progress_bar=False, batch_size=32)
|
132 |
+
print(f"Created {len(embeddings)} embeddings")
|
133 |
+
|
134 |
+
# Initialize ChromaDB (use in-memory for HF Spaces)
|
135 |
+
print("Initializing ChromaDB...")
|
136 |
+
client = chromadb.Client(Settings(
|
137 |
+
anonymized_telemetry=False,
|
138 |
+
is_persistent=False, # Changed to False for HF Spaces
|
139 |
+
))
|
140 |
+
|
141 |
+
# Create collection
|
142 |
+
try:
|
143 |
+
client.delete_collection("chatbot")
|
144 |
+
except:
|
145 |
+
pass
|
146 |
+
|
147 |
+
collection = client.create_collection("chatbot")
|
148 |
+
|
149 |
+
# Add documents
|
150 |
+
ids = [f"doc_{i}" for i in range(len(docs))]
|
151 |
+
collection.add(documents=docs, embeddings=embeddings.tolist(), ids=ids)
|
152 |
+
print(f"Added {len(docs)} documents to collection")
|
153 |
+
|
154 |
+
_chatbot_embedder = embedder
|
155 |
+
_chatbot_collection = collection
|
156 |
+
print("Vector store initialization complete")
|
157 |
+
|
158 |
+
except Exception as e:
|
159 |
+
print(f"Error during vector store initialization: {e}")
|
160 |
+
traceback.print_exc()
|
161 |
+
raise
|
162 |
|
163 |
def get_chatbot_response(query: str) -> str:
|
164 |
try:
|
165 |
+
print(f"\n=== Processing query: {query} ===")
|
166 |
+
|
167 |
if not query or not query.strip():
|
168 |
return "Please type a question about the Codingo platform."
|
169 |
|
170 |
+
# Clear GPU cache
|
171 |
import torch
|
172 |
if torch.cuda.is_available():
|
173 |
torch.cuda.empty_cache()
|
174 |
+
print("Cleared GPU cache")
|
175 |
|
176 |
+
# Initialize components
|
177 |
+
try:
|
178 |
+
_init_vector_store()
|
179 |
+
except Exception as e:
|
180 |
+
print(f"Vector store initialization failed: {e}")
|
181 |
+
return "I'm having trouble accessing my knowledge base. Please try again later."
|
182 |
+
|
183 |
+
try:
|
184 |
+
_init_hf_model()
|
185 |
+
except Exception as e:
|
186 |
+
print(f"Model initialization failed: {e}")
|
187 |
+
return "I'm having trouble loading my language model. Please try again later."
|
188 |
|
189 |
embedder = _chatbot_embedder
|
190 |
collection = _chatbot_collection
|
191 |
model = _hf_model
|
192 |
tokenizer = _hf_tokenizer
|
193 |
|
|
|
|
|
194 |
# Get relevant documents
|
195 |
+
print("Creating query embedding...")
|
196 |
query_embedding = embedder.encode([query])[0]
|
197 |
+
|
198 |
+
print("Searching for relevant documents...")
|
199 |
results = collection.query(query_embeddings=[query_embedding.tolist()], n_results=3)
|
200 |
retrieved_docs = results.get("documents", [[]])[0] if results else []
|
201 |
+
context = "\n".join(retrieved_docs[:3]) if retrieved_docs else ""
|
202 |
+
print(f"Retrieved {len(retrieved_docs)} documents")
|
203 |
+
|
204 |
+
# Prepare prompt
|
205 |
if hasattr(model, 'model_type') and model.model_type == "seq2seq":
|
|
|
206 |
prompt = f"Context: {context}\n\nUser: {query}\nAssistant:"
|
207 |
else:
|
208 |
+
# For DialoGPT or other causal models
|
209 |
+
prompt = f"Context: {context}\n\nUser: {query}\nLUNA AI:"
|
210 |
+
|
211 |
+
print(f"Prompt length: {len(prompt)} characters")
|
212 |
+
|
213 |
+
# Tokenize
|
214 |
+
print("Tokenizing input...")
|
215 |
+
try:
|
216 |
+
inputs = tokenizer(
|
217 |
+
prompt,
|
218 |
+
return_tensors="pt",
|
219 |
+
truncation=True,
|
220 |
+
max_length=400, # Reduced for safety
|
221 |
+
padding=True,
|
222 |
+
return_attention_mask=True
|
223 |
)
|
224 |
+
print(f"Input shape: {inputs['input_ids'].shape}")
|
225 |
+
except Exception as e:
|
226 |
+
print(f"Tokenization error: {e}")
|
227 |
+
traceback.print_exc()
|
228 |
+
return "I had trouble processing your input. Please try a shorter question."
|
229 |
+
|
230 |
+
# Move to device
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
232 |
+
|
233 |
+
# Generate response
|
234 |
+
print("Generating response...")
|
235 |
with torch.no_grad():
|
236 |
try:
|
237 |
+
output_ids = model.generate(
|
238 |
+
input_ids=inputs['input_ids'],
|
239 |
+
attention_mask=inputs['attention_mask'],
|
240 |
+
max_new_tokens=100, # Reduced for safety
|
241 |
+
min_length=10,
|
242 |
+
num_beams=2, # Reduced for memory
|
243 |
+
do_sample=True,
|
244 |
+
temperature=0.8,
|
245 |
+
pad_token_id=tokenizer.pad_token_id,
|
246 |
+
eos_token_id=tokenizer.eos_token_id,
|
247 |
+
early_stopping=True,
|
248 |
+
)
|
249 |
+
print(f"Output shape: {output_ids.shape}")
|
250 |
+
except Exception as e:
|
251 |
+
print(f"Generation error: {e}")
|
252 |
+
traceback.print_exc()
|
253 |
+
|
254 |
+
# Try a simpler generation
|
255 |
+
try:
|
256 |
+
print("Trying simpler generation...")
|
257 |
output_ids = model.generate(
|
258 |
input_ids=inputs['input_ids'],
|
259 |
+
max_new_tokens=50,
|
|
|
|
|
|
|
|
|
260 |
pad_token_id=tokenizer.pad_token_id,
|
|
|
261 |
)
|
262 |
+
except Exception as e2:
|
263 |
+
print(f"Simple generation also failed: {e2}")
|
264 |
+
return "I'm having trouble generating a response. Please try again."
|
|
|
265 |
|
266 |
+
# Decode response
|
267 |
+
print("Decoding response...")
|
268 |
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
269 |
+
print(f"Raw response: {response[:100]}...")
|
270 |
|
271 |
+
# Clean up response
|
272 |
+
if "LUNA AI:" in response:
|
|
|
|
|
273 |
response = response.split("LUNA AI:")[-1].strip()
|
274 |
+
elif "Assistant:" in response:
|
275 |
+
response = response.split("Assistant:")[-1].strip()
|
276 |
|
277 |
+
# Remove the input if it's in the response
|
278 |
if query in response:
|
279 |
+
response = response.replace(query, "").strip()
|
280 |
+
|
281 |
+
# Final cleanup
|
282 |
+
response = response.strip()
|
283 |
+
|
284 |
+
if not response or len(response) < 5:
|
285 |
+
response = "I'm here to help you with questions about the Codingo platform. What would you like to know?"
|
286 |
+
|
287 |
+
print(f"Final response: {response}")
|
288 |
+
return response
|
289 |
|
290 |
except Exception as e:
|
291 |
+
print(f"Unexpected error in get_chatbot_response: {e}")
|
|
|
292 |
traceback.print_exc()
|
293 |
+
return "I apologize, but I encountered an unexpected error. Please try again with a different question."
|